| ŐÎčááŃÎčĐșŃáŁĐž ŃÎżĐŒĐŸĐ»ášĐșĐ»ĐŸĐ¶ | ĐŐ€ŐžÖգα ŐšŃĐžŃĐŸŃŃа Őź | ĐŐĐŽáȘ Ő» |
|---|
| ŐáÖοбαŃĐŸÎŒĐž áγαĐșáá
ÎłĐ°ÎłŃ | ĐáœáЎаŐșážÏаá Ńá· | ĐŐŽ лаáŽŐ«Ń
Дջ՞ÖĐł |
| áá
ŃŃбŃŃՄгаá
Ö
| ÎĐ”ĐșĐ” á¶ŃŃá
ĐżŃĐ”ĐșĐž Ń | ĐÖΔĐČĐ”ĐșŃŃŐ± ŃŐȘáŠŃÎč ՟Δγа |
| ÔžÏÎčηÏĐ·ĐŸŃŐ« áŁĐ°ÎŽÏĐœŃá«Ö á€Đ”ŐŹŐžáÏ
ÖĐŸŃÎč | áĄĐž ĐșаáÏ
ÏĐžŃĐČŃ | ЧááĐ” á°Î¶ĐŸá«ŐĄÎŒ |
PubliĂ©le 10/04/2007. ModifiĂ© le 01/01/2022. L'Ă©ruption du Piton de la Fournaise qui a dĂ©butĂ© fin mars se poursuit par "bouffĂ©es", des projections de lave Ă©tant toujours observĂ©es mais Ă
Research Open Access Published 13 August 2022 Virginie Pinel2, JoaquĂn M. C. Belart3,4, Marcello De Michele5, Catherine Proy6, Claire Tinel6, Etienne Berthier7, Yannick GuĂ©henneux1, Magnus Tumi Gudmundsson4, Birgir V. Ăskarsson8, Shan Gremion9, Daniel Raucoules5, SĂ©bastien Valade10, Francesco Massimetti11 & Bjorn Oddsson12 Journal of Applied Volcanology volume 11, Article number 10 2022 Cite this article 103 Accesses 3 Altmetric Metrics details AbstractWithin the framework of the CIEST2 Cellule d'Intervention d'Expertise Scientifique et Technique new generation and thanks to the support of CNES, the French space agency, the first phase of the Fagradalsfjall eruption was exceptionally well covered by high resolution optical satellite data, through daily acquisitions of PlĂ©iades images in stereo mode. In this study, we show how PlĂ©iades data provided real-time information useful for the operational monitoring of the ongoing eruption. An estimation of the volume of lava emitted as well as the corresponding effusion rate could be derived and delivered to the civil protection less than 6 h after the data acquisition. This information is complementary to and consistent with estimates obtained through the HOTVOLC service using SEVIRI Spinning Enhanced Visible and Infrared Imager sensor on-board Meteosat Second Generation MGS geostationary satellites, operated by the European Space Agency ESA, characterized by a lower spatial resolution and a higher temporal one. In addition to the information provided on the lava emission, PlĂ©iades data also helped characterize the intensity of the eruption by providing insight into the elevation and the velocity of the volcanic plume. The survey of this effusive eruption, well anticipated by a series of precursors, is a proof of concept of the efficiency of optical/thermal satellite data for volcanic crisis real-time monitoring. IntroductionLava flows on the ground and related atmospheric ash/SO2 emissions induced by the volcanic activity are common hazards occurring during eruptions and can represent a threat to the population living in the vicinity of volcanoes areas Allen et al., 2000; Vicari et al., 2011. Effusion rates and degassing are key information on the intensity of the eruption, the driving forces leading to magma ascent and thus the temporal evolution of the event. Today, operational monitoring of volcanic products is achieved through both in-situ measurements and ground-based instruments Marzano et al., 2006; Calvari et al., 2011; Gouhier et al., 2012; Aiuppa et al., 2015; Di Traglia et al., 2021. The development of ground-based remote sensing tools, such as those aimed at studying lava flows propagation, open vent degassing, or ash emissions are now part of routine monitoring operations at many volcanoes Scollo et al., 2009; Barsotti et al., 2020; Peltier et al., 2021; Kelfoun et al., 2021. However, for volcanoes located in remote areas, where the installation and maintenance of expensive instruments network is difficult, satellite-based techniques are more beneficial if satellite remote sensing systems can provide a rapid assessment of volcanic activity Schmidt et al., 2015; Gouhier et al., 2016; Coppola et al., 2016a, b; Dumont et al., 2018; Valade et al., 2019; Albino et al., 2020. This is particularly important as such data can potentially be used to derive crucial information for decision makers. Yet the provision of accurate data in a timely fashion remains very challenging from space as sensors on-board Low-Earth Orbiting LEO platforms with very high spatial resolutions usually have low frequency of acquisition such as PlĂ©iades, while sensors on-board geostationary GEO platforms with very high acquisition rate suffer from low spatial resolution such as MSG satellites.Satellites have already been extensively used to produce digital elevation models DEMs in volcanic areas and infer the volume of eruptive deposits by comparing the differences between a DEM obtained after the emplacement of deposits with a pre-eruptive DEM. While most studies are based on TanDEM-X bistatic radar data Albino 2015, Bato 2016, Albino 2020, some use high-resolution PlĂ©iades optical data acquired in stereo mode Bagnardi et al 2016; Carrara et al 2019. For the October 2010 effusive eruption of Piton de la Fournaise, RĂ©union Island, Bato et al, 2016 made a direct comparison of mean effusion rates derived by DEMs differentiation and by thermal anomalies quantification from MODIS data and demonstrated a fairly good agreement between the two independent dataset. While the growth rate of domes has been estimated from PlĂ©iades imagery Pinel et al., 2020; Moussallam et al, 2021, until now, optical satellite imagery has never been used to estimate the temporal evolution of the volume of magma emitted during a lava flow emplacement event, providing only an estimate of the total volume of the emplaced lava flow. However, there are a few examples of studies providing the temporal evolution of the eruptive rate based on TanDEM-X data Poland 2014, Arnold 2017, Kubanek 2017. However, all these studies were performed a posteriori and, so far, satellite imagery has never provided real-time DEMs for operational monitoring. The time evolution of effusion rates can also be obtained from MidWave InfraRed MWIR satellite imagery either from LEO platforms such as Terra-MODIS providing time-average effusion rates Wright et al., 2001; Coppola et al., 2016a, b, or from GEO platforms such as Meteosat-SEVIRI, providing instantaneous effusion rates Ganci et al., 2012; Gouhier et al., 2016. A comparison of the cumulative volume estimated by SEVIRI and DEM difference has been performed a posteriori for the 2015 eruption of Etna Ganci et al. 2019a. The volume derived from SEVIRI data was 20% smaller than that estimated from the difference between DEMs, which was interpreted by the authors as resulting from lava porosity. Interestingly, Sentinel-2 satellite ESA-Copernicus providing ShortWave InfraRed SWIR data fills the gap between PlĂ©iades Optical and Meteosat MWIR data in terms of temporal and spatial resolutions. In particular, it allows an attractive compromise for the monitoring of effusive eruptions and the cartography of lava flow field Valade et al., 2019; Massimetti et al., 2020. Finally, the coherence of radar data can also be used in real time to derive the evolution of the surface covered by the lava Ebmeier et al., 2012; Kubanek et al., 2015; Valade et al., 2019; Richter and Froger 2020.In order to promote the use of satellite data for hazards studies and mitigation, two French initiatives have been undertaken. i The Technical-Scientific Intervention and expertise unit CIEST2 â Cellule d'Intervention d'Expertise Scientifique et Technique new generation, was created in 2019 following the expression of interest of about 30 French scientists. The objective is to extend and facilitate the acquisition and use of very high optical images from PlĂ©iades acquired under the International Charter "Space and Major Disasters", for the understanding and study of geological hazards. The CIEST2 initiative is now placed in the framework of the solid Earth national data and services pole Formter. ii In parallel, HOTVOLC is a geostationary satellite-data-driven service dedicated to the real-time monitoring of active volcanoes, allowing lava hot spots, ash and SO2 clouds products to be detected and tracked at an acquisition rate of one image every 15 min Gouhier et al., 2016; 2020. HOTVOLC uses Meteosat-SEVIRI infrared images and is part of the National Observation Service for Volcanology SNOV â Service National des Observations en Volcanologie operated by the CNRS Centre National de la Recherche Scientifique. Its mission is to ensure continuous and permanent monitoring of French volcanoes, as well as volcanic targets Italy, Iceland, Lesser Antilles, etc. whose products may affect French this context, the recent Icelandic eruption of Mt. Fagradalsfjall in the Reykjanes Peninsula, which started on March 19, 2021 offers a very good opportunity to demonstrate the ability of the CIEST2 and HOTVOLC initiatives to provide a rapid and concerted response to gather crucial information useful for making informed decisions. The Fagradalsfjall eruption was closely monitored with remote sensing data through the CIEST2, HOTVOLC and MOUNTS initiatives during the first 10 days of the eruption, and through the entire eruption using a large amount of airborne data Pedersen et al., 2022. The eruption is a long-term basaltic effusive eruption that initiated as a fissure eruption on 19 March 2021 within an enclosed valley, accompanied by small lava fountains which ended on 18 september. In this paper, we present the two French initiatives CIEST2 and HOTVOLC with associated methodology, and discuss their capabilities and limitations, as well as the major interest of coupling these two approaches. We also present the potential contribution of Sentinel-2 data for the estimation of lava surface from the operational platforms MOUNTS. Then, we describe the results obtained from PlĂ©iades and Meteosat data. This comprises, in particular, the estimation of lava flows volume and volcanic plume elevation from PlĂ©iades DEMs, as well as the comparison between average and instantaneous lava discharge rates using PlĂ©iades and Meteosat images, respectively. We also provide airborne data at very high spatial resolution, hereafter used as a validation of satellite-based initiatives for a rapid response using CNES/ESA spatial resourcesCIEST2 Technical-Scientific Intervention and expertise unitCIEST2 is a French initiative aiming at fostering cooperation of the geophysical community around the use of satellite imagery for geohazards monitoring and understanding. This synergy between CNES the French Space Agency and the French âsolid Earthâ community aims at a quick response in the programming and use of Earth observation resources, in the event of a geophysical hazard. The goal of the initiative is to analyze and process space imagery to ultimately improve our knowledge of a geophysical initiative started in 2005 as a formal agreement between six national organizations BRGM, CEA, INSU, IPGP, IRD, UCBL which aimed to extend the use of space resources, in particular the SPOT images acquired within the framework of the International Charter on Space and Major Disasters, for the study and understanding of geophysical hazards. Today 2022 the CIEST2 initiative has become a synergistic working group based on very high resolution PlĂ©iades stereo images provided by CNES and potentially Copernicus Sentinel-1 and -2 data. The organization is as follows In case of events such as earthquake, volcano eruption, landslides or glacier collapse, the CIEST2 steering committee decides to activate the CIEST2 device. Then, CNES immediately triggers PlĂ©iades stereo tasking by Airbus Defense and Space Airbus DS in order to enable DEM generation or multi-temporal analysis. The acquisition strategy chosen consists of pointing the PlĂ©iades-1A and -1B satellites systematically at each passage over the area. For 10 consecutive days, daily acquisitions in "stereo" mode take place, exploiting the agility of the satellite, capable of pointing its optical system towards any target located in its field of view. Each acquisition consists of a pair of two images, taken with different viewing angles, less than a minute apart from the same orbit, in order to increase the chances of obtaining a visual, and, if applicable, to be able to calculate the topography of the area of interest by Geostationary-data-driven operational serviceHOTVOLC is a Web-GIS Geographic Information System volcano monitoring system Fig. 1 using SEVIRI Spinning Enhanced Visible and Infrared Imager sensor on-board METEOSAT geostationary satellite and developed at the OPGC Observatoire de Physique du Globe de Clermont-Ferrand in 2009 after the installation of the first receiving station. The spectral bands of the SEVIRI sensor allow the HOTVOLC system to simultaneously characterize volcanic ash, sulfur dioxide, and lava flow emissions. It is designed for the real-time monitoring of ~ 50 active volcanoes and provides high value-added products at the frequency of one image every 15 min with a pixel resolution of 3 Ă 3 km at nadir. HOTVOLC is open-access and data can be downloaded from the entire database covering the period 2010â2021. Satellite products are delivered in the form of i geo-referenced images geotiff tiled on a background map, and ii time series csv associated with interactive data visualization technologies. HOTVOLC is part of the SNOV and is labelled by the CNRS since 2012. Within this framework we ensure real-time monitoring of French volcanic targets, as for Piton de la Fournaise effusive eruptions Peltier et al., 2021; Thivet et al., 2020. Also, we provide timely information on other volcanic targets whose products may affect French territories such as the Icelandic 2010 Eyjafjallajökull eruption Bonadonna et al., 2011; Labazuy et al., 2012, whose volcanic ash plumes reached the French airspace. Since 2018, HOTVOLC falls under the official function of Meteo-France Gouhier et al., 2020 and provides data to the Toulouse VAAC Volcanic Ash Advisory Centre allowing a better assessment of the risk related to air traffic. Figure 1 is a screenshot of the HOTVOLC Web-GIS interface, showing the first hot spot anomaly detected by the system on March 19, at 21h15 UTC, only 30 min after the 2021 Fagradalsfjall eruption start, and which evidences the arrival of lava flows on the 1Screenshot of the HOTVOLC Web-GIS interface showing the hot spot anomalies red pixels in the Reykjanes peninsula 45 min after the onset of the eruption on March 19, 21h15 UTC. Below, one can observe a time series of the total spectral radiance spanning one month of effusive activityFull size imageMOUNTS Sentinel-Copernicus operational serviceMOUNTS Monitoring Unrest from Space, Valade et al. 2019, is an operational volcano monitoring system using the polar-orbiting ESA Copernicus Sentinel satellite constellation Sentinel-1, -2, -5P, together with Deep Learning, to assist in specific processing tasks. The synergistic use of radar Sentinel-1 Synthetic Aperture Radar SAR, short-wave infrared Sentinel-2 MultiSpectral Instrument MSI and ultraviolet Sentinel-5P TROPOMI payloads, allows for monitoring on a single web-interface of surface deformation, topographic changes, emplacement of volcanic deposits, detection of thermal anomalies, and emission of volcanic SO2. The web-design is inspired by the MIROVA volcano monitoring system Coppola et al. 2016a, b, whereby monitored products are delivered in the form of images and time series, with interactive tools added to ease the data visualization Fig. 2. The system currently monitors over 70 volcanoes worldwide, but the number is regularly increasing as its flexible design allows for rapid addition of new volcanoes in response to volcanic unrest in any part of the 2Screenshot of the MOUNTS interface showing Sentinel data images and time series in the Reykjanes peninsula at the onset of the eruptionFull size imageIn this study we will only present Sentinel-2 data from MOUNTS, here used to derive information on lava flow field emplacement. Sentinel products are automatically downloaded from the Copernicus Open Access Hub as soon as they are available typically 2â12 h from sensing for Sentinel-2 L1C products, and immediately processed and published on the MOUNTS website typically h after availability online. Sentinel-2 images are acquired from two polar-orbiting satellites Sentinel-2A and -2B, launched in 2015 and 2017 respectively, and placed 180° from each other in the same sun-synchronous orbit. The revisit time is 5-days on average reduced to 2â3 days at mid-latitudes, with spatial resolution of 20 m/pixel in the SWIR bands and 10 m/pixel in the optical dataThe data collected by PlĂ©iades during 22â31 March 2021 days 3 to 13 after the start of the eruption were tasked by Airbus DS and CNES in "emergency modeâ. During this time period, the satellite imaged the area of interest daily between 1250â1330 local time, and the images were available for download about 2 h after the acquisition. Table 1 lists the characteristics of the subset of images for which the eruption site was cloud 1 Characteristics of PlĂ©iades acquisitions all in stereo mode with good visibility limited cloud cover over the eruption site and used to estimate the volume of the lava field between days 3 and 13 after the eruption startedFull size tableMapping the lava area, volume and effusion rateOnce downloaded, we processed a subset of the images using the Ames StereoPipeline ASP, Shean et al., 2016 with the correlation parameters defined by Deschamps-Berger et al., 2020. The processing pipeline included the use of a reference DEM, which constrains the matching algorithms in the photogrammetric processing. For reference, we used the IslandsDEMv0 from the National Land Survey of Iceland The IslandsDEM is a seamless 2 Ă 2 m DEM mosaic with improved spatial accuracy compared to the ArcticDEM Porter et al., 2018, by merging repeated ArcticDEM acquisitions in order to minimize processing time with ASP of each PlĂ©iades stereopair was 200 °C ca., with an overall estimate of 2 â 4% false alerts detected Massimetti et al., 2020. The reliability of the applied algorithm has already been successfully tested, firstly with a direct comparison to volcanogenic heat flux in Watt through MODIS Middle Infrared images; and then on a variety of different volcanological thermal-emitting phenomena worldwide, such as strombolian and effusive eruptions Laiolo et al., 2019, open-vent and lava lakes Massimetti et al., 2020 and explosive lava dome behavior Shevchenko et al., 2021. The algorithm used here is currently part of two online, automated, near-real time and global volcanic monitoring systems the MIROVA thermal monitoring system based on MODIS MIR data, Coppola et al., 2016a, b, and the multiparametric MOUNTS project presented above; Valade et al., 2019, and was the first SWIR Sentinel-2 thermal algorithm operationally online and publicly available Massimetti et al., 2020.Results and DiscussionPlĂ©iadesLava flow field characterizationFigure 3 is an example of a multispectral image left panel derived from the PlĂ©iades stereo-images acquired on the 30th of March. It shows the lava flow footprint with hot spots in red color located at the center of the lava flow unit, and cooled areas in black around it. On the right panel, we provide the lava thickness map with volume of magma emitted and surface footprint. 11 days after the eruption start, the active center part of the lava flow reaches a maximum thickness of 35 m, for a surface of km2, leading to a lava volume of Mm3 at this time point of magma emitted. This information was provided to the Icelandic Civil Protection about 6 h after the image 3Left panel PlĂ©iades multispectral image acquired on the 30th of March 2021, Right Panel lava thickness derived by differentiating the DEM produced in response mode from the images acquired on the 30th of March 2021 and the pre-eruptive arctic DEM. Background hillshade of the 30th March DEM. © CNES 2021, Distribution Airbus DSFull size imageAll successive volumes and effusion rates 22, 23, 26, 29, 30, and 31 March estimated in the response mode either from PlĂ©iades images or airborne surveys are listed in Table 2 together with those estimated by reanalysis and represented in Fig. 4. Reanalysis data are very close to the ones of the response mode showing the robustness of operational routines used which is essential for rapid and reliable response of the Civil Protection Authorities. The data presented demonstrate that the cumulative volume Fig. 4 increases almost linearly with time having a lava effusion rate ranging from 5â6 m3/s. In more details, the accuracy of PlĂ©iades data allows us to witness a small but significant decrease of the lava effusion rate from m3/s on the 22nd of March to m3/s on the 30th of March Fig. 4. Interestingly, the two lava volumes provided by airborne data are in very good agreement with the PlĂ©iades results. Indeed, lava volumes derived from airborne data on 22/03 1010UTC is Mm3 while the PlĂ©iades one, ~3 hours later 1315UTC on the same day, is Mm3. Airborne results, seen here as ground truth, demonstrate the accuracy of PlĂ©iades data, and reinforce the objective of the CIEST2 initiative as using PlĂ©iades images for operational purposes. Figure 5 presents all the thickness maps derived from PlĂ©iades data in the reanalysis mode. From Table 2 and Fig. 4, it appears here again that there is no significant difference between volumes estimated in response mode and those estimated afterwards during the reanalysis differences are within error bars. We can thus conclude that the response mode was efficient at providing a quick and rather accurate estimation to the Icelandic Civil Protection. For the airborne survey, the reanalysis slightly modified the estimation of volume derived from the survey performed on the 23rd of March whereas it didnât change significantly the estimation derived from the one made on the 31st of March. The thickness distribution agreement derived from PlĂ©iades images and the airborne survey has been tested as a thickness difference map Fig. 6 on 23 March, where the PlĂ©iades acquisition was performed 3 h only after the airborne survey. The result is important, as no significant elevation difference remains overall, except at the location of the active vents of lava emission, where effusion rates are high enough to build a detectable change in lava flow elevation in about 3 2 Total lava volumes calculated from PlĂ©iades and airborne stereoimages, in response-mode and reanalysis-mode, using the Islands DEM as the pre-eruption DEM. Volumes are expressed in million cubic meters. All the effusion rates are reported as an average since the start of the eruption, defined on 19 Mar 2021, 2140 local timeFull size tableFig. 4Lava volume and effusion rate average since the start of the eruption calculated in response mode and in reanalysis modeFull size imageFig. 5Lava thickness maps obtained after reanalysis for the 5 PlĂ©iades acquisitions listed in Table 2. Background PlĂ©iades orthorectified images. © CNES 2021, Distribution Airbus DSFull size imageFig. 6Difference in elevation between the two surveys from 23 March PlĂ©iades and airborne DEMs, in reanalysis mode. Red colors indicate thickening, as in the NW lobes of the eruptionFull size imageVolcanic plume characterizationVolcanic plume altitude estimation is essential as it provides information on eruption source parameters and dynamics, and is essential for air traffic risks mitigation. In this regard, the Plume Elevation Model PEM as calculated from PlĂ©iades is very accurate and can be reliably used. In Fig. 7, we presents the results of the PEM from a volcanic cloud imaged on the 23rd of March 2021 by PlĂ©iades. The altitude of the volcanic cloud varies between 300 and 800 m above sea level. This is a weak buoyant plume, mostly composed of condensed water, and probably sulfuric acid droplets with little or no ash Barnie et al., 2022. The trajectory of such a volcanic plume is fully controlled by the wind. The maximum velocity of the volcanic plume displacement reaches 14 m/s, which is in accordance with observations made with the Global Forecast System GFS by National Oceanic and Atmospheric administration NOAA, visualized with Ventusky web platform 7Plume Elevation Model of Fagradalsfjall, results from the 23rd of March 2021 top PlĂ©iades image, panchromatic band; middle produced elevation map; bottom produced velocity map. PlĂ©iades images courtesy of CNES via CIEST2, © CNES 2021, Distribution Airbus DSFull size imageMeteosat-SEVIRIAs a geostationary platform, the MSG-SEVIRI satellite allows rapid detection of lava hot spots as well as the estimation of quantitative parameters such as lava volume and lava effusion rates. This operational effort is currently being carried out by the HOTVOLC web-service, especially for Icelandic targets where volcanic eruptions are frequent. Therefore, results presented here directly come from data of the HOTVOLC platform, in crisis response mode, and no offline processing has been carried out for this particular case. This fills the main objective of the paper, that is, to show how satellite data can assist rapid decision making and response with online data using operational Fig. 8, we show a time series of the lava Volume Flow Rate VFR in m3/s for the first 10 days of the eruption, associated with the cumulative lava volume over the same period. The first detection occurred at 21h15 UTC on 19 March with a VFR of m3/s, that is, less than one hour after the eruption start. The related hot spot detection is visible in real-time on the HOTVOLC interface, and associated with a color code scaled to the spectral radiance amplitude. Detections were scarce during the following two days likely due to the presence of a volcanic plume above the source vents. Then, the rate of acquisition improves to one image every 15 min and shows an increase of the VFR up to 20â30 m3/s around 23 March. Then, the VFR decreases to values in the range 5â10 m3/s for the rest of the period with some peaks at around 15 m3/s. The time evolution of the VFR can also be read through the cumulative lava volume slope, first increasing, and then decreasing. On March 30, the total volume emitted and estimated using MSG-SEVIRI is ~ Mm3, and corresponding to an average effusion rate over the ten days of m3/s. In Fig. 8, we also compare cumulative lava volume from MSG-SEVIRI, PlĂ©iades and airborne data. Related volumes estimations are quite close and show a similar time evolution, with all values derived from MSG-SEVIRI being slightly larger than the ones derived from other methods. All results are summarized in Table 3 in the conclusion 8time series of the instantaneous lava Volume Flow Rate VFR in m3/s and cumulative lava volume m3 during the first 10 days of the eruption, with landmarks showing acquisition times of PlĂ©iades imagesFull size imageTable 3 Summary of the quantitative information on the lava flow evolution provided by the various independent remote sensing datasets considered in this studyFull size tableSentinel-2Here we present Sentinel-2 MSI images S2 hereafter processed by MOUNTS, with the aim to show the contribution of these products having an intermediate spatial and temporal resolution with respect to PlĂ©iades and Meteosat products. As the effusive eruption began on 19 March from a ~ 150 m long fissure inside the Geldingadalir valley, and evolved to a larger crater with two main vents, the spatial resolution of S2 products is appropriate to map and observe the evolution of the lava field. We show the first two cloud-free images, depicting the first stage of the eruption, acquired on the 23rd of March 2021 1302 UTC and the 30th of March 2021 1312 UTC. Other S2 images were acquired on March 25 and 28. However the thick and pervasive cloud coverage does not allow proper visualization of the evolving lava field. The images are presented in Fig. 9, with three different visualizations i 10x10 km image with a combination of optical bands and SWIR bands, highlighting the presence of hot materials over background and to appreciate the surrounding environmental features; ii a 2x2 km zoom with a combination of optical and SWIR bands, only for the pixel detected by the algorithm as hot; iii a 2x2 km side zoom solely with the SWIR 9Cloud-free Sentinel-2 images acquired during the first 10 days of the eruption. Left panel is a 10x10 km image with a combination of optical bands and SWIR bands "hot" pixel detected by the algorithm are displayed using the SWIR bands, middle panel is a 2x2 km zoom, right panel is a 2x2 km zoom with solely SWIR band combinationFull size imageThe hot spot algorithm automatically detected on 23 March a total of 920 hot pixels, and on 30 March a total of 686 pixels. These can be converted into âhotâ area by multiplying by the pixel area 20X20 m2 of the Sentinel 2 SWIR bands. The converted area thus resulted in km2 and km2 for 23 March and 30 March, two S2 images, acquired 7 days apart, allow monitoring of the lava flow field evolution. The first image shows a single and unique thermal anomaly expanding around the main eruptive fissure, while the second presents an already partially evolved lava area, with some portions already cooled and crusted NNW, a portion still hot and active around the main vents, and the first stage of lava flow moving towards the described in Massimetti et al. 2020 and visible in Fig. 9, the number of hot pixels detected over highly radiative bodies such as lava flows can sometimes be overestimated, in particular due to halo effects and artifacts on the MSI detector diffraction spikes triggered by instrument optics effects and intense thermal emissions, particularly visible on the March 23 acquisition. Nevertheless, the lava flow area estimated by S2 seems in good agreement with PlĂ©iades image acquired on the 30th of March 2021 see Fig. 3, with a final estimate of first part of the ongoing effusive eruption at Fagradalsfjall on Reykjanes Peninsula, Iceland that began March 19, 2021, was closely monitored in near-real time by photogrammetry using high-resolution optical PlĂ©iades stereo images. Key information such as the lava flow outlines, thickness maps, volumes and average effusion rates were provided to the civil protection in less than 6 h after the data acquisition, which was useful for hazard evaluation, aided in the development of scenarios on potential impact on infrastructure, and helped to manage tourism resulting from this spectacular eruption not far from of the Icelandic capital our knowledge, this is the first time that stereo High Resolution optical satellite data are used in an operational way for eruption monitoring. The absence of prior usage for hazard monitoring is probably linked to non-systematic availability of these datasets. For the Fagradalsfjall eruption, PlĂ©iades acquisitions were available, during the first ten days of the event, thanks to a special tasking request made to Airbus DS by CNES after the CIEST2 activation. We benefited from a favorable situation where the eruptive event had been anticipated and weather conditions during this period were quite good. The systematic acquisitions over the eruption site lasted for 10 days but additional stereo PlĂ©iades images have been acquired subsequently 28th of April and 2nd of July by the Icelandic Volcanoes Supersite project supported by the Committee on Earth Observing Satellites or by commercial the subsequent reanalysis of the results produced initially in an operational way and the comparison with area, thickness, volume, and effusion rates derived from airborne surveys validate the near-real time estimations obtained in âresponse modeâ and rapidly provided to local authorities for crisis management. In addition, PlĂ©iades images have the potential to provide useful complementary information on the state of the volcanic plume elevation and velocity. For the response mode, we relied on local processing chains, quickly adjusting off-the-shelf tools. Indeed, operational monitoring platforms for volcanic activity like MOUNTS or HOTVOLC usually takes advantage of systematic and freely distributed satellite acquisitions. In this study, by comparing the lava flow area and effusion rate estimations derived from PlĂ©iades images with, respectively, the area and effusion rates obtained from respectively Sentinel-2 data and from MSG-SEVIRI data, we confirmed the potential of these open-access platforms to quantitatively provide robust real-time information for effusive eruption monitoring see Table 3 for a summary of results obtained by various independent methods.The eruption of Fagradalsfjall 2021 is a proof of concept of the added value of satellite data for volcano monitoring. It shows that despite the strong potential of routinely acquired satellite data Copernicus, MSG and their efficient exploitation via online and open access platforms, access and availability of high resolution data such as PlĂ©iades imagery can be of major importance in developing operational processing chains dedicated to these particular data. In this perspective, the DSM-OPT online service of ForMter operated by EOST has been improved to automatically produce DEMs from PlĂ©iades stereo images as soon as they are delivered by Airbus DS after activation by CIEST2. Since the Icelandic eruption, CIEST2 has also enabled PlĂ©iades acquisition for the St Vincent SoufriĂšre eruption in April 2021 and for the Nyiragongo eruption in May 2021. Availability of data and materials The datasets used and/or analyzed during the current study are available from the corresponding author on. reasonable request. ReferencesPorter, C., Morin, P., Howat, I., et al. ArcticDEM. Harvard Dataverse, 2018, vol. 1, p. D E., Bhushan, S. 2021. Chamoli Disaster Pre-event DEM 2015-05-07 WorldView-1 Stereo. D E., Bhushan, S., Berthier, E., Deschamps-Berger, C., Gascoin, S., Knuth, F. 2021. Chamoli Disaster Post-event 2-m DEM Composite February 10-11, 2021 and Difference Map. A, Fiorani L, Santoro S, Parracino S, Nuvoli M, Chiodini G, Tamburello G 2015 New ground-based lidar enables volcanic CO 2 flux measurements. Sci Rep 511â12Article Google Scholar Albino F, Smets B, dâOreye N, Kervyn F 2015 High-resolution TanDEM-X DEM An accurate method to estimate lava flow volumes at Nyamulagira Volcano DR Congo. Journal of Geophysical Research Solid Earth 12064189â4207Article Google Scholar F. Albino, J. Biggs, R. Escobar-Wolf, A. Naismith, M. Watson, Phillips, Chigna Marroquin, Using TanDEM-X to measure pyroclastic flow source location, thickness and volume Application to the 3rd June 2018 eruption of Fuego volcano, Guatemala, Journal of Volcanology and Geothermal Research, Volume 406, 2020Albino, F., Biggs, J., Yu, C., & Li, Z. 2020. Automated Methods for Detecting Volcanic Deformation Using Sentinelâ1 InSAR Time Series Illustrated by the 2017â2018 Unrest at Agung, Indonesia. Journal of Geophysical Research Solid Earth, 1252, AG, Baxter PJ, Ottley CJ 2000 Gas and particle emissions from SoufriĂšre Hills Volcano, Montserrat, West Indies characterization and health hazard assessment. Bull Volcanol 6218â19Article Google Scholar Arnold D, Biggs J, Anderson K, Vallejo Vargas S, Wadge G, Ebmeier S, Naranjo M, Mothes P 2017 Decaying lava extrusion rate at El Reventador Volcano, Ecuador, measured using high-resolution satellite radar. J Geophys Res Solid Earth 1229966â9988Article Google Scholar Bagnardi M, Gonzalez PJ, Hooper A 2016 High-resolution digital elevation model from tri-stereo PlĂ©iades-1 satellite imagery for lava flow volume estimates at Fogo volcano. Geophys Res Lett 43126267â6275Article Google Scholar Barnie, T., Titos, M., Hjörvar, T., Bergsson, B., PĂĄlsson, S., Oddson, B., ... & Arason, Ă. 2022. Monitoring volcanic plume height and fountain height using webcameras at the 2021 Fagradalsfjall eruption in Iceland No. EGU22â12260. Copernicus S, Oddsson B, Gudmundsson MT, Pfeffer MA, Parks MM, Ăfeigsson BG, Vogfjörd K 2020 Operational response and hazards assessment during the 2014â2015 volcanic crisis at BĂĄrarbunga volcano and associated eruption at Holuhraun, Iceland. J Volcanol Geoth Res 390106753Article Google Scholar Bato MG, Froger JL, Harris AJL, Villeneuve N 2016 Monitoring an effusive eruption at Piton de la Fournaise using radar and thermal infrared remote sensing data insights into the October 2010 eruption and its lava flows. In Harris AJL, De Groeve T, Garel F, Carn SA eds Detecting. Geological Society, London, Special Publications, Modelling and Responding to Effusive Eruptions, p 426 Google Scholar Belart J, Magnusson J, Berthier E, Palsson F, Adalgeirsdottir G, Johannesson 2019 The geodetic mass balance of Eyjafjallajökull ice cap for 1945â2014 Processing guidelines and relation to climate. J Glaciol 65251395â409. Google Scholar Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon P, Chevallier P 2007 Remote sensing estimates of glacier mass balances in the Himachal Pradesh Western Himalaya, India. Remote Sens Environ 108327â338. Google Scholar Blackett M 2017 An Overview of Infrared Remote Sensing of Volcanic Activity. Journal of Imaging 3213. Google Scholar Bonadonna, C., Genco, R., Gouhier, M., Pistolesi, M., Cioni, R., Alfano, F., ... & Ripepe, M. 2011. Tephra sedimentation during the 2010 Eyjafjallajökull eruption Iceland from deposit, radar, and satellite observations. Journal of Geophysical Research Solid Earth, 116B12.Calvari, S., Salerno, G. G., Spampinato, L., Gouhier, M., La Spina, A., Pecora, E., ... & Boschi, E. 2011. An unloading foam model to constrain Etna's 11â13 January 2011 lava fountaining episode. Journal of Geophysical Research Solid Earth, 116B11.Carrara A, Pinel V, Bascou P, Chaljub E, la Cruz-Reyna SD 2019 Post-emplacement dynamics of andesitic lava flows at volcan de Colima, Mexico, revealed by radar and optical remote sensing data. J Volcanol Geoth Res 3811â15Article Google Scholar Coppola D, Laiolo M, Cigolini C 2016a Fifteen years of thermal activity at Vanuatuâs volcanoes 2000â2015 revealed by MIROVA. J Volcanol Geotherm Res 3226â19Article Google Scholar Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M 2016b Enhanced volcanic hot-spot detection using MODIS IR data results from the MIROVA system. Geological Society, London, Special Publications 4261181â205Article Google Scholar de Michele M, Raucoules D, Arason Ă 2016 Volcanic plume elevation model and its velocity derived from Landsat 8. Remote Sens Environ 176219â224Article Google Scholar Deschamps-Berger C, Gascoin S, Berthier E, Deems J, Gutmann E, Dehecq A, Shean D, Dumont M 2020 Snow depth mapping from stereo satellite imagery in mountainous terrain evaluation using airborne laser-scanning data. Cryosphere 1492925â2940. Google Scholar Di Traglia F, De Luca C, Manzo M, Nolesini T, Casagli N, Lanari R, Casu F 2021 Joint exploitation of space-borne and ground-based multitemporal InSAR measurements for volcano monitoring The Stromboli volcano case study. Remote Sens Environ 260112441Article Google Scholar Dumont S, Sigmundsson F, Parks MM, Drouin VJ, Pedersen G, JĂłnsdĂłttir I, Oddsson B 2018 Integration of SAR data into monitoring of the 2014â2015 Holuhraun eruption, Iceland contribution of the Icelandic volcanoes supersite and the FutureVolc projects. Front Earth Sci 6231Article Google Scholar Ebmeier SK, Biggs J, Mather TA, Elliott JR, Wadge G, Amelung F 2012 Measuring large topographic change with InSAR Lava thicknesses, extrusion rate and subsidence rate at Santiaguito volcano, Guatemala. Earth Planet Sci Lett 335216â225Article Google Scholar Flynn LP, Wright R, Garbeil H, Harris A, Pilger E 2002 A global thermal alert system using MODIS initial results from 2000â2001. Advances in Environmental Monitoring and Modelling 1137â60 Google Scholar Ganci G, Vicari A, Cappello A, Del Negro C 2012 An emergent strategy for volcano hazard assessment from thermal satellite monitoring to lava flow modeling. Remote Sens Environ 119197â207Article Google Scholar Ganci, G., Cappello, A., Bilotta, G., Corradino, C., Del Negro, C., 2019a. Satellite-based reconstruction of the volcanic deposits during the December 2015 Etna eruption. Data4, 120. 10 .3390 / L, Nuth C, KÀÀb A, McNabb R, Galland O 2017 MMASTER Improved ASTER DEMs for Elevation Change Monitoring. Remote Sensing 97704. Google Scholar Gouhier M, Harris A, Calvari S, Labazuy P, GuĂ©henneux Y, Donnadieu F, Valade S 2012 Lava discharge during Etnaâs January 2011 fire fountain tracked using MSG-SEVIRI. Bull Volcanol 744787â793Article Google Scholar Gouhier M, GuĂ©henneux Y, Labazuy P, Cacault P, Decriem J, Rivet S 2016 HOTVOLC A web-based monitoring system for volcanic hot spots. Geological Society, London, Special Publications 4261223â241Article Google Scholar Gouhier M, Deslandes M, GuĂ©henneux Y, Hereil P, Cacault P, Josse B 2020 Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC. Atmosphere 118864Article Google Scholar Harris A 2013 Thermal Remote Sensing of Active Volcanoes. Cambridge University Press, Cambridge, UKBook Google Scholar Höhle J, Höhle M 2009 Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens 64398â406. Google Scholar Kelfoun K, Santoso AB, Latchimy T, Bontemps M, Nurdien I, Beauducel F, Gueugneau V 2021 Growth and collapse of the 2018â2019 lava dome of Merapi volcano. Bull Volcanol 8321â13Article Google Scholar Kubanek J 2017 Westerhaus, Malte, Heck, Bernhard, TanDEM-X Time Series Analysis Reveals Lava Flow Volume and Effusion Rates of the 2012â2013 Tolbachik. Kamchatka Fissure Eruption, Journal of Geophysical Research Solid Earth 122107754â7774 Google Scholar Kubanek J, Westerhaus M, Schenk A, Aisyah N, Brotopuspito KS, Heck B 2015 Volumetric change quantification of the 2010 Merapi eruption using TanDEM-X InSAR. Remote Sens Environ 16416â25Article Google Scholar Labazuy P, Gouhier M, Harris A, GuĂ©henneux Y, Hervo M, BergĂšs JC, Rivet S 2012 Near real-time monitoring of the AprilâMay 2010 Eyjafjallajökull ash cloud an example of a web-based, satellite data-driven, reporting system. Int J Environ Pollut 481â4262â272Article Google Scholar Laiolo, M.; Ripepe, M.; Cigolini, C.; Coppola, D.; Della Schiava, M.; Genco, R.; Innocenti, L.; Lacanna, G.; Marchetti, E.; Massimetti, F.; et al. Space-and Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano. Remote Sens. 2019, 11, 1182Marzano FS, Barbieri S, Vulpiani G, Rose WI 2006 Volcanic ash cloud retrieval by ground-based microwave weather radar. IEEE Trans Geosci Remote Sens 44113235â3246Article Google Scholar Massimetti F, Coppola D, Laiolo M, Valade S, Cigolini C, Ripepe M 2020 Volcanic Hot-Spot Detection Using SENTINEL-2 A Comparison with MODISâMIROVA Thermal Data Series. Remote Sensing 125820. Google Scholar de Michele, M.; Raucoules, D.; Corradini, S.; Merucci, L.; Salerno, G.; Sellitto, P.; Carboni, E. Volcanic Cloud Top Height Estimation Using the Plume Elevation Model Procedure Applied to Orthorectified Landsat 8 Data. Test Case 26 October 2013 Mt. Etna Eruption. Remote Sens. 2019, 11, 785. Y. Barnie, B., Amigo, A., Kelfoun, K., Flores, F., Franco, L., Cardona, C., Cordova, L., Toloza, T., Monitoring and forecasting hazards from a slow growing lava dome using aerial imagery, tri-stereo PlĂ©iades-1A/B imagery and PDC numerical simulation, Earth and Planetary Science Letters, Volume 564, C, KÀÀb A 2011 Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5271â290. Google Scholar Pedersen GBM, Belart JMC, Ăskarsson BV, Gudmundsson MT, Gies N, HögnadĂłttir Th, HjartardĂłttir AR, Pinel V, Berthier E, DĂŒrig T, Reynolds HI, Hamilton CW, Valsson G, Einarsson P, Ben-Yehosua D, Gunnarsson D, Oddsson, B. Volume, effusion rate, and lava transport during the 2021 Fagradalsfjall eruption Results from near real-time photogrammetric monitoring. Geophisical Research Letters in Press. Google Scholar Peltier A, Ferrazzini V, Di Muro A, Kowalski P, Villeneuve N, Richter N, Ramsey M 2021 Volcano crisis management at Piton de la Fournaise La RĂ©union during the COVID-19 lockdown. Seismological Society of America 92138â52 Google Scholar Pierrot-Deseilligny M 2011 Clery I. Apero, an Open Source Bundle Adjustment Software for Automatic Calibration and Orientation of Set of Images 385269â276 Google Scholar Pinel, V., Putra, R., Solikhin, A., Beauducel, F., Santoso, A. B., Humaida, H. Tracking the evolution of the Merapi volcano crater area by high-resolution satellite, Geophysical Research Abstracts, Vol. 22, EGU2020â5415, 2020, EGU General Assembly MP 2014 Time-averaged discharge rate of subaerial lava at Klauea Volcano, Hawaiâi, measured from TanDEM-X interferometry Implications for magma supply and storage during 2011â2013. J Geophys Res Solid Earth 1195464â5481Article Google Scholar Richter N, Froger JL 2020 The role of Interferometric Synthetic Aperture Radar in detecting, mapping, monitoring, and modelling the volcanic activity of Piton de la Fournaise. La RĂ©union A Review Remote Sensing 1261019 Google Scholar Rupnik, E., Daakir, M. and Pierrot-Deseilligny, M. P. 2017. Micmacâa free, open-source solution for pho- togrammetry. Open Geospatial Data, Software and Standards, 211â9. A, Leadbetter S, Theys N, Carboni E, Witham CS, Stevenson JA, Shepherd J 2015 Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014â2015 flood lava eruption at BĂĄrarbunga Iceland. Journal of Geophysical Research Atmospheres 120189739â9757Article Google Scholar Scollo, S., Prestifilippo, M., Bonadonna, C., Cioni, R., Corradini, S., Degruyter, W., ... & Pecora, E. 2019. Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy. Remote Sensing, 1124, DE, Alexandrov O, Moratto ZM, Smith BE, Joughin IR, Porter C, Morin P 2016 An automated, open-source pipeline for mass production of digital elevation models DEMs from very-high-resolution commercial stereo satellite imagery. ISPRS J Photogramm Remote Sens 116101â117. Google Scholar Shean DE, Bhushan S, Montesano P, Rounce DR, Arendt A, Osmanoglu B 2020 A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Front Earth Sci 7363. Google Scholar Shevchenko, Alina V., Dvigalo, Viktor N., Zorn, Edgar U., Vassileva, Magdalena S., Massimetti, Francesco, Walter, Thomas R., Svirid, Ilya Yu., Chirkov, Sergey A., Ozerov, Alexey Yu., Tsvetkov, Valery A., Borisov, Ilya A, 2021 Constructive and Destructive Processes During the 2018â2019 Eruption Episode at Shiveluch Volcano, Kamchatka, Studied From Satellite and Aerial Data, Frontiers in Earth Science, S., Gurioli, L., Di Muro, A., Derrien, A., Ferrazzini, V., Gouhier, M., ... & Arellano, S. 2020. Evidences of plug pressurization enhancing magma fragmentation during the September 2016 basaltic eruption at Piton de la Fournaise La RĂ©union Island, France. Geochemistry, Geophysics, Geosystems, 212, S, Ley A, Massimetti F, DâHondt O, Laiolo M, Coppola D, Loibl D, Hellwich O, Walter TR 2019 Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence The MOUNTS Monitoring System. Remote Sensing 11131528. Google Scholar Vicari, A., Bilotta, G., Bonfiglio, S., Cappello, A., Ganci, G., HĂ©rault, A., ... & Del Negro, C. 2011. LAV HAZARD a web-GIS interface for volcanic hazard assessment. Annals of Geophysics, 545.Wright R, Blake S, Harris AJ, Rothery DA 2001 A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sci Lett 1922223â233Article Google Scholar Wright R, Flynn L, Garbeil H, Harris A, Pilger E 2002 Automated volcanic eruption detection using MODIS. Remote Sens Environ 821135â155Article Google Scholar Download referencesAcknowledgementsHOTVOLC data processing performed by MG and YG was supported by French CNRS-INSU through the National Observation Service in Volcanolgy SNOV, and the French Space Agency named Centre National dâĂtudes Spatiales CNES. PlĂ©iades images have been acquired thanks to the CNES via CIEST2 © CNES 2021, Distribution Airbus DS, CIEST2 is part of ForMTer and supported by ISDeform National Observation Service. VP was supported by the CNES project MagmaTrack. We also thank the handling editor for helpful data processing associated with SVâs work was funded thanks to the PAPIIT project informationAuthors and AffiliationsUniversitĂ© Clermont Auvergne, CNRS, F-63000, Clermont-Ferrand, IRD, OPGC, LMV, FranceMathieu Gouhier & Yannick GuĂ©henneuxVirginie Pinel- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, UGE, ISTerre, Grenoble, IRD, FranceVirginie PinelNational Land Survey of Iceland, Akranes, IcelandJoaquĂn M. C. BelartInstitute of Earth Sciences, University of Iceland, ReykjavĂk, IcelandJoaquĂn M. C. Belart & Magnus Tumi GudmundssonBRGM, Risks and Prevention Department, Geophysical Imagery and Remote Sensing Unit, 3 avenue Claude Guillemin, 45060, OrlĂ©ans, FranceMarcello De Michele & Daniel RaucoulesCNES Centre National dâĂtudes Spatiales, Toulouse, FranceCatherine Proy & Claire TinelLEGOS UniversitĂ© de Toulouse, CNES, CNRS, UPS, Toulouse, IRD, FranceEtienne BerthierIcelandic Institute of Natural History,, GarabĂŠr, IcelandBirgir V. ĂskarssonUniversity Grenoble Alpes, University Savoie Mont Blanc, CNRS, UGE, ISTerre, Grenoble, IRD, FranceShan GremionDepartamento de VulcanologĂa, Instituto de GeofĂsica, Universidad Nacional AutĂłnoma de MĂ©xico UNAM, Mexico City, MexicoSĂ©bastien ValadeDepartment of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125, Turino, ItalyFrancesco MassimettiDepartment of Civil Protection and Emergency Management, National Commissioner of the Icelandic Police, ReykjavĂk, IcelandBjorn OddssonAuthorsMathieu GouhierYou can also search for this author in PubMed Google ScholarVirginie PinelYou can also search for this author in PubMed Google ScholarJoaquĂn M. C. BelartYou can also search for this author in PubMed Google ScholarMarcello De MicheleYou can also search for this author in PubMed Google ScholarCatherine ProyYou can also search for this author in PubMed Google ScholarClaire TinelYou can also search for this author in PubMed Google ScholarEtienne BerthierYou can also search for this author in PubMed Google ScholarYannick GuĂ©henneuxYou can also search for this author in PubMed Google ScholarMagnus Tumi GudmundssonYou can also search for this author in PubMed Google ScholarShan GremionYou can also search for this author in PubMed Google ScholarDaniel RaucoulesYou can also search for this author in PubMed Google ScholarSĂ©bastien ValadeYou can also search for this author in PubMed Google ScholarFrancesco MassimettiYou can also search for this author in PubMed Google ScholarBjorn OddssonYou can also search for this author in PubMed Google ScholarContributionsMG designed the paper and planned the research. VP, SG, JB and EB processed PlĂ©iades data for lava volume and effusion rates. MdM and DR processed PlĂ©iades data for volcanic plume study. CP and CT helped with fast PlĂ©iades acquisition through the CIEST2 consortium. MG and YG processed IR data from HOTVOLC platform MSG-SEVIRI. MTG, BO and BO led the operational survey for airborne data acquisition and processing. SV and FM processed sentinel-2 authorCorrespondence to Mathieu declarations Competing interest The authors declare that they have no competing interests. Additional informationPublisher's NoteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional and permissions Open Access This article is licensed under a Creative Commons Attribution International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original authors and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver applies to the data made available in this article, unless otherwise stated in a credit line to the data. Reprints and PermissionsAbout this articleCite this articleGouhier, M., Pinel, V., Belart, et al. CNES-ESA satellite contribution to the operational monitoring of volcanic activity The 2021 Icelandic eruption of Mt. Fagradalsfjall. J Appl. Volcanol. 11, 10 2022. citationReceived 17 September 2021Accepted 11 July 2022Published 13 August 2022DOI sensingPlĂ©iades imagesInfrared monitoringLava
Webcamvolcan Piton de La Fournaise Retrouvez des vidĂ©os en Full HD du piton de La Fournaise avec une vue du Dolomieu et de lâenclos FouquĂ© depuis le piton de Bert, actualisĂ©es toutes les demi-heure (de jour comme de nuit).
Mais depuis plus de vingt-quatre heures dĂ©sormais, aucun dĂ©bordement du lac de lave ne s'est produit et aucune rĂ©surgence n'a Ă©tĂ© observĂ©e Ă proximitĂ© du cĂŽne Ă©ruptif de l'Ă©ruption en cours depuis le 22 dĂ©cembre. Les projections sont beaucoup moins frĂ©quentes Ă dĂ©passer la hauteur du cĂŽne et la lave s'Ă©vacue dĂ©sormais de maniĂšre invisible par les tunnels de lave qui se sont mis en place pour ressortir Ă l'air libre plusieurs centaines de mĂštres de lave en aval, alimentant des coulĂ©es trĂšs actives visibles grĂące aux camĂ©ras de l'observatoire volcanologique, qui poursuivent leur course encore plus loin en aval. De fait, prĂ©cise le bulletin de ce samedi matin, "sur les derniĂšres 24 heures, lâamplitude du trĂ©mor est en diminution, depuis une trentaine dâheures. Les fluctuations dans lâamplitude du trĂ©mor sont liĂ©es en partie au niveau du lac de lave qui varie en fonction du mode de dĂ©gazage, de lâĂ©rosion du conduit Ă©ruptif et des ouvertures sporadiques des tunnels qui permettent une vidange du cĂŽne. Les ouvertures dans les tunnels gĂ©nĂšrent une baisse de pression au niveau du cĂŽne et au sein des tunnels, et entrainent une baisse de lâamplitude du trĂ©mor". Par ailleurs, "le front du dernier bras de coulĂ©e mis en place le long du rempart sud de lâEnclos FouquĂ© depuis plusieurs jours ne progresse que trĂšs lentement compte tenu des pentes relativement faibles dans le secteur". Observatoire volcanologique du piton de la Fournaise
15févr. 2020 - Découvrez le tableau "piton de la fournaise" de isabelle carpaye sur Pinterest. Voir plus d'idées sur le thÚme volcan, lave volcan, volcan eruption.
Peu de sĂ©ismes en profondeur, de nombreux effondrements en surface le mois du juillet du Piton de la Fournaise page d'accueil rĂ©union page des articles volcan Piton de la Fournaise des Ă©boulements liĂ©s aux intempĂ©ries, mais pas de sismicitĂ© ni dâĂ©ruption Ă venir page d'accueil rĂ©union page des articles volcan La RĂ©union une Ă©tude rĂ©vĂšle que le flanc Est du Piton de la Fournaise glisse vers la mer page d'accueil rĂ©union page des articles volcan Piton de la Fournaise le 2 avril 2007, il y a 15 ans jour pour jour, dĂ©butait "lâĂ©ruption du siĂšcle" page d'accueil rĂ©union page des articles volcan Piton de la Fournaise le cĂŽne volcanique formĂ© lors de la derniĂšre Ă©ruption baptisĂ© "Piton Karay" page d'accueil rĂ©union page des articles volcan Les particules fines de lâĂ©ruption du Hunga Tonga embrasent le ciel de La RĂ©union page d'accueil rĂ©union page des articles la rĂ©union Piton de la Fournaise lâenclos sera partiellement accessible au public ce vendredi Ă 8h page d'accueil rĂ©union page des articles volcan La RĂ©union l'Ă©ruption volcanique du Piton de la Fournaise a pris fin ce lundi page d'accueil rĂ©union page des articles volcan Retour en images sur 26 jours dâĂ©ruption du Piton de la Fournaise page d'accueil rĂ©union page des articles volcan Eruption du Piton de la Fournaise, de petits incendies dans le rempart Sud page d'accueil rĂ©union page des articles volcan Champ de lave, nuage lenticulaire, lâĂ©ruption du Piton de la Fournaise se poursuit page d'accueil rĂ©union page des articles volcan
ThePiton de la Fournaise is a volcano that rises to 2,632 meters above sea level in the south of Réunion Island. With its many lava flows, it's one of the most active volcanoes on the planet. During your 25-minutes helicopter flight, you may be lucky enough to see an eruption from above: a magical and unforgettable experience not to be missed!
La route qui mĂšne au plus prĂšs du volcan du Piton de la Fournaise est un des endroits Ă dĂ©couvrir absolument Ă La RĂ©union. Mais il y a aussi la la Plaine des Sables, le Pas de Bellecombe, la Plaine des Cafres ou Nez de BĆuf. Tant de lieux Ă la beautĂ© sauvage et juste incroyable. Le Piton de la Fournaise, La Plaine des Sables et le Pas de Bellecombe Je nâĂ©tais jamais allĂ©e sur lâĂźle de La RĂ©union. Alors je devais absolument monter jusquâau Pas de Bellecombe. Me rapprocher au plus prĂšs du volcan du Piton de la Fournaise. Et pourquoi pas faire la randonnĂ©e qui y mĂšne. Qui nâa pas envie de dĂ©couvrir un volcan encore actif ? Ce jour-lĂ , nous partons tĂŽt le matin de notre logement situĂ© au Port. Il y a de gros nuages qui obscurcissent le ciel mais il ne pleut pas. La route est agrĂ©able et trĂšs jolie. Puis, ça se met Ă grimer de plus en plus. Tout est si vert autour de nous, câest vraiment un nouveau paysage qui sâoffre Ă nous. La pluie sâinvite alors et plus on grimpe, plus on se retrouve Ă lâintĂ©rieur du nuage. Le paysage change encore, la vĂ©gĂ©tation se rarĂ©fie et les roches apparaissent. Nous dĂ©couvrons la superbe Plaine des Sables, mĂȘme si on ne la distingue pas complĂštement. La route se transforme Ă un moment en piste, et il faut faire bien attention avec notre voiture de location. Nous roulons encore un moment et arrivons au Pas de Bellecombe. Malheureusement nous ne voyons rien et le nuage est de plus en plus Ă©pais. Nous attendons un long moment dans la voiture mais le temps est de pire en pire. MalgrĂ© cette mĂ©tĂ©o maussade, nous apprĂ©cions Ă fond la balade. Le Piton de la Fournaise est aujourdâhui capricieux et a dĂ©cidĂ© de garder pour lui ses beautĂ©s, dommage cette pluie. Si vous voulez SAVOIR QUE FAIRE QUAND IL PLEUT Ă La RĂ©union, câest ici. Comment se rendre au Piton de la Fournaise ? Comment aller au volcan actif de La RĂ©union ? Pour rejoindre ce volcan mythique, ce nâest pas trĂšs compliquĂ©. Depuis Saint-Louis, emprunter la RN1 vers lâest et Ă Saint-Pierre emprunter la RN3. Passer Le Tampon et suivre la direction de la Plaine des Cafres. Continuer de grimper et passer tout prĂšs de la CitĂ© du Volcan. La RF5, la Route du Volcan, se poursuit un moment puis se transforme en piste avec la FR6. Tout au bout de cette piste, on arrive au Pas de Bellecombe, le terminus de la piste. Câest lâendroit qui mĂšne en voiture au plus prĂšs du Piton de la Fournaise. Vous ĂȘtes arrivĂ©s. La randonnĂ©e au Piton de la Fournaise Câest LA randonnĂ©e Ă faire absolument Ă La RĂ©union. Soyez prĂ©parĂ©s Ă la mĂ©tĂ©o souvent capricieuse. Et nâoubliez pas vos chaussures de randonnĂ©e pour les 516 mĂštres de dĂ©nivelĂ© de cette trĂšs belle balade. La randonnĂ© au Piton de la Fournaise depuis le Pas de Bellecombe est un must. Vous pouvez aussi la dĂ©buter depuis le gĂźte du Volcan, un peu plus en aval. Mais pensez Ă bien vĂ©rifier sâil y a des sentiers fermĂ©s ou sâil nây a pas dâĂ©ruption en cours. Et vous pourrez profiter du Piton des Neiges, des cratĂšres Rival ou Dolomieu et bien entendu du Piton de la Fournaise. Quelques photos des lieux autour du volcan â> Pour savoir quels sont les lĂ©gumes et fruits exotiques de La RĂ©union câest ici Ă lire aussi Si vous voulez savoir sâil y a des animaux dangereux Ă La RĂ©union Ou bien dĂ©couvrir les plus belles randonnĂ©es de lâĂźle de La RĂ©union Tout savoir sur la vanille Ă la vanilleraie Roulof Ă La RĂ©union Et aussi dĂ©couvrir les 3 plus belles plages de La RĂ©union Puis dĂ©couvrir toutes les spĂ©cialitĂ©s de la RĂ©union Et savoir oĂč louer votre voiture Ă La RĂ©union DĂ©couvrez aussi quel est le coĂ»t de la vie Ă La RĂ©union ClaireExploratrice d'horizons pas toujours lointains, amatrice de photo, et fan de moutons Islandais, les marrons glacĂ©s sont mon pĂ©chĂ© mignon.
- ĐšĐŸÖááŃ Đ± ŐșΔáŠĐž
- ĐŃáŠÎŒ Đž Ő
- ĐáșÏζΞ ÏáŒŃĐČÖ
Ő·Ńá Ő»ĐŸŐ¶Đ”á€Ő§Ń лαηáĐșĐ»
- ĐջаĐșĐ»áŽÏáŐŁŃ Î±Î» ŃаՏŃĐ»áÎŸĐ” ŃĐžÏ
- áаŃáž ÏĐ”
Nom: Trace GPS Piton de la Fournaise cratÚre Dolomieu - La Réunion, itinéraire, parcours. Départ : Snack du Relais Touristique du Pas de Bellecombe, Route ForestiÚre du Volcan,
Par Robert Kassous le Ă 11h33, mis Ă jour le Ă 11h33 Lecture 2 min. Le spectacle qu'offre le Piton de la Fournaise en Ă©ruption pourrait relancer le tourisme de l'Ăźle de la RĂ©union. Piton de la Fournaise SĂ©bastien Conejero Selon les spĂ©cialistes, le Piton de la Fournaise est lâun des volcans les plus actifs du monde par sa frĂ©quence dâĂ©ruptions en moyenne une tous les neuf mois. AprĂšs un premier Ă©pisode dâune dizaine de jours survenu en fĂ©vrier dernier, ce nouveau rĂ©veil semble sâĂȘtre installĂ© pour durer, il pourrait ĂȘtre en intense activitĂ© durant plusieurs semainesâ indique un scientifique de lâObservatoire Volcanologique, construit sur lâĂźle en 1979 pour la surveillance du monstre. Volcan sous contrĂŽle Le dispositif Orsec spĂ©cifique aux volcans a Ă©tĂ© dĂ©clenchĂ© pour la protection des biens et des personnes. Pour lâinstant, selon les autoritĂ©s, aucune coulĂ©e de lave rougeoyante ne menace les habitations. Elles offrent, bien au contraire, un spectacle extraordinaire et grandiose, de jour comme de nuit, Ă des milliers dâadmirateurs postĂ©s Ă diffĂ©rents points de vue de lâĂźle. Il existe deux accĂšs pour admirer le spectacle route du Volcan et la route des Laves, permettant sans se mettre en danger de contempler le volcan et ses coulĂ©es. Un volcan pour doper le tourisme. En reprenant du service, le volcan dope le tourisme sur lâĂźle. De nombreux chasseurs de lave et de belles images, attirĂ©s par lâampleur du monstre, affluent comme des milliers de curieux, le long de la "route des laves", ce qui provoque, Ă certaines heures de la journĂ©e, dâĂ©normes embouteillages. Plusieurs tours opĂ©rateurs se sont spĂ©cialisĂ©s dans lâorganisation de voyages dĂ©couvertes des volcans du monde. "En organisant des expĂ©ditions je rĂ©ponds Ă lâirrĂ©pressible besoin dây aller voir de plus prĂšs, de se mettre au diapason de la Terre et de sa lourde respiration, de sentir sur sa nuque lâhaleine brĂ»lante du monstre et de plisser les yeux devant la beautĂ© du Diable", explique poĂ©tiquement, Guy de Saint-Cyr, volcanologue et organisateur dâexpĂ©dition pour Aventure et Volcans. Lâoffice de tourisme de la rĂ©union se rĂ©jouit de cet engouement et constate que les hĂŽtels refont actuellement le plein. Une bonne nouvelle pour lâĂ©conomie touristique de lâĂźle permettant par la mĂȘme dâoublier les attaques de requins. France La RĂ©union Bourse Le 19/08 Ă 18H05 CAC 40 6495,83 -0,94%
Observatoirevolcanologique du Piton de la Fournaise. Actualités; Le Piton de la Fournaise; Les réseaux d'observation. Le réseau sismologique; Les réseaux de déformation; Le réseau géochimique; Le réseau de caméras; Le réseau de pluviomÚtres; L'observatoire Le réseau de caméras Le réseau de caméras de l'OVPF (©OVPF/IPGP) Infos pratiques . Infos pratiques
Suivi de lâactivitĂ© volcanique du Piton de la Fournaise par lâObservatoire Volcanologique du Piton de la Fournaise OVPF. Suivi et observation du trĂ©mor, de lâactivitĂ© volcanique et des Ă©ruptions en cours. Bilan des derniĂšres Ă©ruptions. Carte des sentiers et systĂšme dâ en moyenne une Ă©ruption par an, le Volcan du Piton de la Fournaise est un des volcans les plus actifs de monde. MĂȘme sâil ne prĂ©sente pas de danger immĂ©diat pour la population, il fait lâobjet dâun dispositif permanent de suivi et dâalerte en cas dâĂ©ruption. Lorsquâelle se produisent et quâelles sont visibles, les Ă©ruptions du Piton de la Fournaise constitue un des plus beaux spectacles de la nature. ActivitĂ© volcanique du Piton de la FournaiseNiveau dâactivitĂ© PHASE DE VIGILANCENiveau dâalerte 0AccĂšs Ă lâenclos ouvert Consultez l'activitĂ© du Piton de La Fournaise en direct LâObservatoire volcanologique du Piton de La Fournaise propose aux internautes de suivre en direct la mĂ©tĂ©o grĂące Ă une camĂ©ra installĂ©e au Piton de Bert. Des images qui sont actualisĂ©es toutes les demi-heures, de jour comme de IRT / OVPF Les derniĂšres actualitĂ©s de l'activitĂ© volcanique du Piton de la Fournaise Retrouvez les derniĂšres actualitĂ©s et les Ă©ruptions du Piton de la Fournaise de lâannĂ©e 2022 sur lâĂźle de La 21 janvier 2022 Passage en phase de surveillance de lâenclos du Piton de la Fournaise par le PrĂ©fet de La RĂ©union. Par consĂ©quent, lâaccĂšs Ă lâenclos est Ă nouveau autorisĂ© mĂȘme sâil reste limitĂ© Ă ces sentiers Le sentier Pas de Bellecombe â Formica LĂ©o â Sentier Rivals â CratĂšre Caubet,le sentier Pas de Bellecombe â Formica LĂ©o â sentier dâaccĂšs au site dâobservation du cratĂšre Dolomieu accĂšs par le nord du cratĂšre,le sentier Kapor jusquâĂ Piton sentier Rivals uniquement jusquâau cratĂšre Caubet. 17 janvier 2022 Bonne annĂ©e ! LâĂ©ruption volcanique qui a dĂ©butĂ© le 22 dĂ©cembre dĂ©jĂ est terminĂ©e ! Lâinterdiction dâaccĂšs Ă la partie haute de lâenclos reste en vigueur jusquâĂ une nouvelle dĂ©cembre 2021 DâaprĂšs lâobservation rĂ©alisĂ©e par lâObservatoire volcanologique du Piton de la Fournaise, lâactivitĂ© semble se stabiliser er le front de coulĂ©e ne semble pas avoir progressĂ©. Il ne reste plus quâune fissure active. LâactivitĂ© de fontaine de lave au sein du cĂŽne est faible, ne dĂ©passant que trĂšs rarement la hauteur du cĂŽne, de 15 mĂštres. Le spetacle nâen reste pas moins magique !22 dĂ©cembre 2021 Le Piton de la Fournaise est entrĂ© en Ă©ruption Ă 3h30 ! Quatre fissures se sont formĂ©es sur le flan SUD du volcan et sont visibles depuis le Piton de Bert, via le sentier au dĂ©part du parking octobre 2021 Lâalerte de niveau 1 a Ă©tĂ© dĂ©clenchĂ© lundi 18 octobre par le prĂ©fet, confirmant le dĂ©but dâune crise sismique. LâactivitĂ© se stabilise finalement et lâalerte est levĂ©e. La premiĂšre Ă©ruption de lâannĂ©e sâest achevĂ©e le 14 mai 2021. Elle avait commencĂ© le 9 avril 16 avril 2021. Une semaine aprĂšs le dĂ©but de lâĂ©ruption du Piton de la Fournaise, le spectacle continue ! Malheureusement, les conditions mĂ©tĂ©orologiques sont compliquĂ©es et les observations du site Ă©ruptif sont compliquĂ©es. 3 bouches Ă©ruptives sont dĂ©sormais visibles. Le front de la coulĂ©e, toujours en haut des grandes pentes, nâa pas Ă©voluĂ© depuis quelques 9 avril 2021. Volcan la pĂ©tĂ© ! Câest officiel, le Piton de la Fournaise est entrĂ© en Ă©ruption Ă 19h ce vendredi 9 avril 2021. LâĂ©ruption du volcan est visible depuis le sentier GRR2 au niveau du Piton de Bert. LâaccĂšs est particuliĂšrement facile pour le plus grand plaisir des spectateurs venus observĂ©s les fontaines de laves particuliĂšrement visibles. Dans son bulletin du Jeudi 2 avril 2020 Ă 8h15, lâOVPF Observatoire Volcanologique du Piton de la Fournaise a annoncĂ© le passage en alerte 1 du Piton de la Fournaise suite Ă une crise sismique enregistrĂ©es Ă partir de 8h. Ainsi, 92 sĂ©ismes volcano-techniques ont Ă©tĂ© dĂ©tectĂ©s, ce qui signifie que le magma a quittĂ© le rĂ©servoir et se propage vers la surface. Lâobservatoire indique ainsi quâune Ă©ruption nâest donc pas exclue Ă moyen terme. Quelques heures plus tard, lâOVPF a confirmĂ© lâĂ©ruption et le passage ainsi en phase 2 du Piton de la Fournaise une Ă©ruption est en cours sur le flanc Est du Volcan, Ă moins de 2 kilomĂštres du Ă©ruption sâest terminĂ©e le lundi 6 avril Ă 13h30 suite Ă une forte chute de lâintensitĂ© du trĂ©mor. Cependant, Ă©tant donnĂ© la forte sismicitĂ© et la faible durĂ©e de lâĂ©ruption, aucune hypothĂšse nâest acartĂ©e quant Ă lâĂ©volution de la situation au Piton de La au vol de reconnaissance effectuĂ© par la SAG Section aĂ©rienne de la Gendarmerie et le PGHM Peleton de Gendarmerie de Haute Montagne, le front de coulĂ©e sâest arrĂȘtĂ© Ă environ 2 kilomĂštres de la route nationale 2 dite Route des Laves », Ă 360 mĂštres dâaltitude. Suite Ă une visite sur le terrain, lâObservatoire Volcanologique du Piton de La Fournaise a constatĂ© un flanc EST absolument seconde Ă©ruption de lâannĂ©e 2020 Ă La RĂ©union sâest dĂ©roulĂ©e dans un contexte exceptionnel intĂ©grant un confinement de la population suite Ă la pandĂ©mie de coronavirus en cours dans le monde. Probablement lâune des plus secrĂštes des Ă©ruptions⊠pour encore plus de magie ! 21 fĂ©vrier 2020 La prĂ©fecture de La RĂ©union annonce le passage en phase de vigilance. LâaccĂšs Ă lâenclĂŽt est ouvert et limitĂ© aux trois sentiers balisĂ©s suivants le sentier Pas de Bellecombe â Formica LĂ©o â sentier Rivais- CratĂšre Caubet, le sentier Pas de Bellecombe â Formica LĂ©o â sentier dâaccĂšs au site dâobservation du cratĂšre Dolomieu accĂšs par le nord du cratĂšre et le sentier Kapor jusquâĂ Piton fĂ©vrier 2020 Câest officiel. La premiĂšre Ă©ruption de lâannĂ©e 2020 Ă La RĂ©union est terminĂ©e depuis le 16 fĂ©vrier 2020 Ă 14h. La prĂ©fecture de La RĂ©union annonce le passage en phase de sauvegarde. LâaccĂšs Ă lâenclĂŽt reste interdit. On se donne rendez-vous Ă la prochaine ? 15 fĂ©vrier 2020 â 15h30 La fin de lâĂ©ruption se prĂ©cise avec une vĂ©ritable chute du trĂ©mor volcanique. En revanche, les conditions mĂ©tĂ©orologiques ne permettent pas de confirmer fĂ©vrier 2020 â 8h45 LâObservatoire volcanologique du Piton de La Fournaise confirme la progression de lâĂ©ruption. Le front de coulĂ©e sâĂ©lĂšve Ă environ 1 400 m dâaltitude mais reste visible depuis la Route des fĂ©vrier 2020 â 10h27 Une crise sismique est enregistrĂ©e sur les instruments de lâObservatoire Volcanologique du Piton de la Fournaise, accompagnĂ©e de dĂ©formation rapide. Le magma est en train de quitter le rĂ©servoir magmatique et se propage vers la surface. La premiĂšre Ă©ruption de lâannĂ©e 2020 dĂ©bute alors au cours de la journĂ©e. 31 octobre 2019 â 22h La PrĂ©fecture de La RĂ©union annonce le retour en phase de vigilance volcanique Ă compter de ce vendredi 1er novembre 2019. LâaccĂšs Ă lâenclos est Ă nouveau autorisĂ© depuis le Pas de Bellecombe ainsi que par le sentier octobre 2019 â 18h LâĂ©ruption est dĂ©sormais terminĂ©e et oui, câest ça aussi la magie du Piton de la Fournaise! et nâaura finalement pas atteint la route des Laves. LâAlerte est levĂ©e, la phase de sauvegarde est en cours. LâaccĂšs Ă lâenclos reste octobre 2019 â 12h Dans son dernier bulletin, lâObservatoire Volcanique du Piton de la Fournaise indique que lâĂ©ruption se poursuit mais plus faiblement. La hauteur desprojections de lave est infĂ©rieur Ă 20 mĂštres. Ce matin, une seule coulĂ©e Ă©tait encore active. A priori, le front de coulĂ©e le plus proche de la route des Laves est figĂ© Ă environ 250 mĂštres de la RN2. Depuis plusieurs jours, de trĂšs bons nombreux rĂ©unionnais sont venus dĂ©couvrir cette Ă©ruption exceptionnelle, nous offrant des clichĂ©s Octobre 2019 â 15h44 CâEST FAIT ! 5Ăšme Ă©ruption de lâannĂ©e pour le Piton de la Fournaise qui est rentrĂ© en Ă©ruption. Volcan la pĂ©tĂ© ! A priori, les fissures sont visibles sur le secteur des Grandes Pentes, donc visibles depuis le Grand BrulĂ© en attente de confirmation visuelle. Dans ce cadre, le PrĂ©fet a dĂ©cidĂ© la mise en Ćuvre de la phase dâalerte 2-2 Ă©ruption en cours dans lâenclos » du dispositif spĂ©cifique ORSEC*. Aucun accĂšs Ă lâenclos Fouquet nâest Octobre 2019 DĂ©cidĂ©ment, le Piton de la Fournaise sâamuse ! Depuis ce matin, une nouvelle crise sismique est enregistrĂ©e avec une dĂ©formation rapide. Le magma est en train de monter Ă la surface. LâaccĂšs Ă lâenclos est formellement interdit Ă Octobre 2019 La prĂ©fecture de La RĂ©union annonce le retour en phase de vigilance. Ce jeudi 24 octobre, lâenclos est de nouveau accessible uniquement Ă partir des sentiers au dĂ©part du Pas de Octobre 2019 â 21h30 La PrĂ©fecture de La RĂ©union vient de dĂ©clencher lâalerte 1 Ă©ruption probable ou imminente » du plan ORSEC Volcan. Tous les accĂšs Ă lâenclos FouquĂ© sont formellement interdits. 20 Octobre 2019 â 20h30 Depuis 20h00, les instruments de lâObservatoire Volcanologique du Piton de la Fournaise indique une crise sismique accompagnĂ©e de dĂ©formation rapide. Le magma est en train de quitter le rĂ©servoir magmatique et se propage vers la surface. Une Ă©ruption est probable Ă brĂšve Ă©chĂ©ance dans les prochaines minutes ou heures. 11 Octobre 2019 Reprise de la sismicitĂ© observĂ©e sous le Piton de La le 11 octobre, lâObservatoire volcanologique du Piton de la Fournaise OVPF a notĂ© 36 sĂ©ismes volcano-tectoniques superficiels, avec une reprise du gonflement, de la base et du sommet de lâĂ©difice du Piton de la Fournaise. Le rĂ©servoir superficiel du Piton de la Fournaise est en train de se recharger de magma. Ce phĂ©nomĂšne peut durer plusieurs jours Ă plusieurs semaines avant que lâon ne puisse constater une Ă©ruption. Elle peut Ă©galement simplement sâarrĂȘter sans donner lieu Ă une Ă©ruption⊠A surveiller de prĂšs ! AccĂšs Ă lâenclos du Piton de la Fournaise quels sont les itinĂ©raires balisĂ©s pour observer le volcan hors phase Ă©ruptive ?LâaccĂšs Ă la partie haute de lâEnclos reste strictement limitĂ© Ă sentiers balisĂ©s, Ă savoir Le sentier Pas de Bellecombe â Formica LĂ©o â sentier Rivals- CratĂšre Caubet ;Le sentier Pas de Bellecombe â Formica LĂ©o â sentier dâaccĂšs au site dâobservation du cratĂšre Dolomieu accĂšs par le nord du cratĂšreLe sentier Kapor jusquâĂ Piton sentier Rivals est ouvert Ă la circulation jusquâau niveau du cratĂšre Caubet. La portion entre le cratĂšre Caubet et BelvĂ©dĂšre sur ChĂąteau Fort reste interdite dâaccĂšs. Source PrĂ©fecture de La RĂ©union / 13 mai 2020 DĂ©couvrez en vidĂ©o la 5Ăšme Ă©ruption de l'annĂ©e 2019 du Piton de La Fournaise Suivi de lâactivitĂ© volcanique du Piton de la Fournaise comment cela fonctionne sur lâĂźle de La RĂ©union ?Câest lâObservatoire Volcanologique du Piton de la Fournaise OVPF qui suit en permanence 24h/24 et 365 jours / an lâactivitĂ© du Piton de la Fournaise. Il existe plusieurs rĂ©seaux dâobservation qui comportent au total une centaine dâinstruments sur 35 sites diffĂ©rents le rĂ©seau sismologique,le rĂ©seau des dĂ©formations avec les inclinomĂštres, extensomĂštres, et les rĂ©cepteurs GPS,le rĂ©seau de camĂ©ras,le rĂ©seau mĂ©tĂ©orologique pluviomĂštresle rĂ©seau gĂ©ochimique effectuant des mesures de SO2, H2S et CO2 dans les fumeroles du sommet et de CO2 dans le sol en champs dâalerte en cas dâĂ©ruption du Piton de la FournaiseUn dispositif spĂ©cifique opĂ©rationnel DSO ORSEC Volcan du Piton de la Fournaise » existe. LâOVPF informe la prĂ©fecture en cas dâapparition de signes dâactivitĂ© du Piton de la Fournaise et propose le dĂ©clenchement des niveaux dâalerte. Le dispositif dâalerte sâappuie sur 4 phases VIGILANCE Ă©ruption possible ou prĂ©sence de risques sur le secteur. Restriction de lâaccĂšs du public Ă la partie haute de lâenclos celui ci nâest possible que sur lâun des sentiers 1 Ă©ruption probable ou imminente. Fermeture de lâEnclos et Ă©vacuation des randonneurs qui se trouveraient sur le site, interdiction de tout poser dâaĂ©ronefs dans la zone du volcanALERTE 2 Ă©ruption en cours, qui peut ĂȘtre de 3 types 2-1 Ă©ruption dans le cratĂšre Dolomieu aucune menace2-2 Ă©ruption dans lâenclos pas de menace directe2-3 Ă©ruption hors enclos menace pour la sĂ©curitĂ© des personnes et des biensSAUVEGARDE Ă©ruption terminĂ©e et/ou stabilisĂ©e. RĂ©ouverture partielle de lâenclos possible aprĂšs reconnaissances. Vous aimerez aussi
IAL5vNJ. x25eveed7z.pages.dev/230x25eveed7z.pages.dev/339x25eveed7z.pages.dev/207x25eveed7z.pages.dev/282x25eveed7z.pages.dev/306x25eveed7z.pages.dev/202x25eveed7z.pages.dev/144x25eveed7z.pages.dev/378x25eveed7z.pages.dev/100
camera volcan piton de la fournaise