Thiswebcam Piton de la Fournaise with the theme Volcanos was added on October 12, 2017 and is operated by Institut de Physique du Globe de Paris.It got 16205 visitors since then. If this camera doesn't

14 Aout 2022. Italie , Stromboli Au petit matin du 12 aoĂ»t, et plus prĂ©cisĂ©ment entre 5h30 et 6h30, une violente averse a frappĂ© l’üle de Stromboli. Comme l’indique la station mĂ©tĂ©orologique de Scari, gĂ©rĂ©e par l’INGV avec la collaboration de l’Association locale de promotion sociale Attiva Stromboli », plus de 60 millimĂštres de pluie sont tombĂ©s en une heure, et plus de la moitiĂ© d’entre eux en seulement 15 minutes, entre 5h45 et 6h00, comme le montre le graphique ci-dessous. Pour faire une comparaison qui donne une idĂ©e de l’intensitĂ© de cet Ă©vĂ©nement, en seulement 15 minutes, la mĂȘme quantitĂ© de pluie est tombĂ©e que celle qui tombe en moyenne sur Stromboli pendant tout le mois de mai. Les fortes pluies de ce type, qui dans le passĂ© Ă©taient classĂ©es comme des Ă©vĂ©nements exceptionnels, deviennent de plus en plus habituelles, ce qui est dĂ» Ă  la surchauffe du sol et de l’atmosphĂšre induite par les changements climatiques en cours. Cette pluie intense a dĂ©clenchĂ© un vaste flux de boue et de dĂ©bris, qui s’est dĂ©tachĂ© des pentes au-dessus a envahi les routes, les maisons et les entreprises de la ville, causant d’énormes dĂ©gĂąts. L’inondation dĂ©sastreuse est le rĂ©sultat de l’effet combinĂ© de cette pluie intense avec la dĂ©nudation totale du sol qui s’est produite Ă  la suite de l’incendie de forĂȘt du 25 mai, qui a complĂštement dĂ©truit la couverture vĂ©gĂ©tale des pentes au-dessus de la ville. Le Vallonazzo, la vallĂ©e la plus importante au-dessus de la ville de Stromboli en arriĂšre-plan, complĂštement dĂ©pouillĂ© de vĂ©gĂ©tation en raison de l’incendie de forĂȘt du 25 mai. La couverture vĂ©gĂ©tale agit en effet comme un tampon qui prĂ©serve le sol de l’action directe de la pluie, prolongeant son action stabilisatrice dans le sous-sol immĂ©diat grĂące aux racines, dont l’imbrication crĂ©e un vĂ©ritable rĂ©seau qui aide Ă  maintenir ensemble les diffĂ©rents Ă©lĂ©ments volcaniques dont le sol de Stromboli est composĂ© mĂȘme des cendres trĂšs fines, des scories, pierre ponce et fragments de roche mĂȘme de grandes dimensions. Une fois que la couverture vĂ©gĂ©tale a disparu Ă  la suite de l’incendie, l’énergie mĂ©canique libĂ©rĂ©e par l’impact des gouttes de pluie sur un sol nu a tendance Ă  sĂ©parer ses composants les plus infimes, tels que les cendres volcaniques, formant des coulĂ©es de boue et les dĂ©bris qui s’écoulent le long des pentes incorporent d’autres matĂ©riaux encore plus grossiers, augmentant progressivement leur capacitĂ© Ă©rosive. Les pluies intenses et les incendies de forĂȘt, de plus en plus frĂ©quents en raison de la surchauffe induite par le changement climatique, sont parmi les principales causes d’instabilitĂ© hydrogĂ©ologique. Ces phĂ©nomĂšnes revĂȘtent une importance particuliĂšre dans les zones territoriales qui, par leur nature intrinsĂšque, sont particuliĂšrement exposĂ©es Ă  l’instabilitĂ©, telles que les zones volcaniques actives, ce qui confirme la nĂ©cessitĂ© d’une surveillance et d’une protection appropriĂ©es et efficaces des pentes Ă  risque. Source INGV Ambiente . Lire l’article Photos INGV , Stromboli Stati D’animo. IndonĂ©sie , Merapi Rapport sur l’activitĂ© du mont Merapi du 5 au 11 aoĂ»t 2022 , 12 aoĂ»t 2022 . RÉSULTATS DES OBSERVATIONS Visuel Le temps autour du mont Merapi est gĂ©nĂ©ralement ensoleillĂ© le matin et le soir, tandis qu’il est brumeux l’aprĂšs-midi . Une fumĂ©e blanche, d’épaisseur faible Ă  moyenne, de faible pression et de 100 m de haut a Ă©tĂ© observĂ©e depuis le poste d’observation du mont Merapi Babadan le 11 aoĂ»t 2022 Ă  06h06 WIB. Cette semaine, 43 avalanches de lave ont Ă©tĂ© observĂ©es au Sud-Ouest, descendant la riviĂšre Bebeng avec une distance de glissement maximale de 1 500 m. Dans le dĂŽme Sud-Ouest, la croissance du dĂŽme est observĂ©e, le volume du dĂŽme est calculĂ© Ă  1 664 000 m3. Quant au dĂŽme central, il fait 2 772 000 m3. SismicitĂ© Cette semaine, la sismicitĂ© sur le mont Merapi a enregistrĂ© 13 tremblements de terre volcaniques peu profonds VTB, 582 tremblements de terre de phases multiples MP, 633 tremblements de terre d’avalanches RF, 159 tremblements de terre d’émissions DG 5 tremblements de terre tectoniques TT. L’intensitĂ© du sĂ©isme de cette semaine est encore assez Ă©levĂ©e. DĂ©formation La dĂ©formation du mont Merapi qui a Ă©tĂ© surveillĂ©e Ă  l’aide d’EDM et de GPS cette semaine n’a montrĂ© aucun changement significatif. Pluie et lahars Cette semaine, aucune pluie n’a Ă©tĂ© signalĂ©e au poste d’observation du mont Merapi. Il n’y a aucun rapport de lahars ou de dĂ©bit supplĂ©mentaire dans les riviĂšres qui prennent leur source sur le mont Merapi. Conclusion Sur la base des rĂ©sultats des observations visuelles et instrumentales, il est conclu que L’activitĂ© volcanique du mont Merapi est encore assez Ă©levĂ©e sous la forme d’une activitĂ© d’éruption effusive. L’état de l’activitĂ© est dĂ©fini au niveau SIAGA ». Source BPPTKG Photo Yohannes Tyas Galih Jati La RĂ©union , Piton de la Fournaise ActivitĂ© du Piton de la Fournaise SismicitĂ© Au mois de juillet 2022, l’OVPF-IPGP a enregistrĂ© au niveau du massif du Piton de la Fournaise au total ‱ 29 sĂ©ismes volcano-tectoniques superficiels 0 Ă  2,5 km au-dessus du niveau de la mer sous les cratĂšres sommitaux ; ‱ 2 sĂ©ismes profonds en dessous du niveau de la mer ; ‱ 1178 Ă©boulements dans le CratĂšre Dolomieu, les remparts de l’Enclos FouquĂ© et du Piton de Crac, et de la RiviĂšre de l’Est. Le mois de juillet 2022 aura Ă©tĂ© marquĂ© par une faible sismicitĂ© au niveau du Piton de la Fournaise avec une moyenne de 1 sĂ©isme volcano-tectonique superficiel par jour . La plupart de ces Ă©vĂ©nements ont Ă©tĂ© localisĂ©s sous le cratĂšre Dolomieu . Prises de vue du cassĂ© de la RiviĂšre de l’Est le 25 juillet 2022 © SAG-PGHM. Le mois de juillet a Ă©galement Ă©tĂ© marquĂ© par de nombreux 1178 Ă©boulements dans le CratĂšre Dolomieu, les remparts de l’Enclos FouquĂ© et au cassĂ© de la RiviĂšre de . La majoritĂ© des effondrements et les plus importants ont lieu dans le secteur du cassĂ© de la RiviĂšre de l’Est . Une reconnaissance aĂ©rienne effectuĂ©e par la Section AĂ©rienne de la Gendarmerie et le PGHM le 25 juillet montre la prĂ©sence d’un important cĂŽne d’éboulis au pied du cassĂ© de la RiviĂšre de l’Est. Concentration en CO2 dans le sol Suite Ă  l’éruption de dĂ©cembre 2020, une augmentation continue des Ă©missions de CO2 du sol est enregistrĂ©e au niveau des sites distaux secteurs Plaine des Cafres mais aussi proximaux GĂźte du volcan. La derniĂšre Ă©ruption a eu lieu du 22 dĂ©cembre 2021 au 17 janvier 2022. A partir du 27 dĂ©cembre 2021, l’éruption a Ă©tĂ© associĂ©e Ă  une augmentation rapide et sans prĂ©cĂ©dent des Ă©missions de CO2 du sol sur la station proximale du GĂźte et Ă  une inversion de tendance sur les stations distales. L’inversion observĂ©e sur les stations distales a durĂ© jusqu’au 7 janvier 2022, puis les concentrations sont restĂ©s stables sur des valeurs intermĂ©diaires jusqu’à fin janvier. Sur le site proximal du GĂźte, une chute brutale des flux avec des valeurs trĂšs faibles de CO2 a Ă©tĂ© dĂ©tectĂ©e aprĂšs le 3 janvier 2022. A la fin de l’éruption une nouvelle phase d’augmentation a Ă©tĂ© enregistrĂ©e, mais avec un taux plus faible. Les fortes fluctuations observĂ©es au cours du mois de fĂ©vrier sont certainement liĂ©es Ă  des influences environnementales dues Ă  deux Ă©vĂšnements cycloniques . Une nouvelle augmentation a Ă©tĂ© enregistrĂ©e Ă  la fois en champ distal et proche Ă  la fin fĂ©vrier avec une forte accĂ©lĂ©ration Ă  la mi-mars 2022 . Cette phase d’augmentation a durĂ©e jusqu’au 5 mai en champ distal et jusqu’au 19 mai en champ proche. A noter que l’analyse isotopique des gaz prĂ©levĂ©s Ă  la fois en champ distal PNRN, Plaine des Palmistes et en champ proximal montre une augmentation marquĂ©e de la contribution magmatique sur la pĂ©riode mars-avril 2022. Source OVPF. Lire l’article Photos © SAG-PGHM , G Vitton. Etats- Unis , Yellowstone 44°25’48 » N 110°40’12 » O, Altitude du sommet 9203 pi 2805 m Niveau d’alerte volcan actuel NORMAL Code couleur actuel de l’aviation VERT Travaux rĂ©cents et nouvelles Les scientifiques de l’Observatoire du volcan Yellowstone ont poursuivi un programme de terrain chargĂ© cet Ă©tĂ©. En juillet, des stations GPS semi-permanentes supplĂ©mentaires ont Ă©tĂ© installĂ©es, portant Ă  17 le nombre total de stations dĂ©ployĂ©es. Ces capteurs, qui assurent une densification saisonniĂšre du rĂ©seau GPS continu existant, seront retirĂ©s en septembre/octobre, avant que la neige ne commence Ă  s’accumuler, pour que les donnĂ©es puissent ĂȘtre tĂ©lĂ©chargĂ©es et analysĂ©es. Steamboat Geyser n’est pas entrĂ© en Ă©ruption au cours du mois de juillet l’éruption la plus rĂ©cente a eu lieu le 20 juin. Il y a eu 8 Ă©ruptions majeures d’eau du geyser en 2022. SismicitĂ© En juillet 2022, les stations sismographiques de l’UniversitĂ© de l’Utah, responsables de l’exploitation et de l’analyse du rĂ©seau sismique de Yellowstone, ont localisĂ© 59 tremblements de terre dans la rĂ©gion du parc national de Yellowstone. Le plus grand Ă©vĂ©nement du mois a Ă©tĂ© un tremblement de terre mineur de magnitude 3,1 situĂ© Ă  environ 14 miles au Sud-Sud-Ouest de Mammoth Hot Springs dans le parc national de Yellowstone le 30 juillet Ă  1h44 MDT. L’évĂ©nement faisait partie d’un petit essaim de 13 tremblements de terre qui se sont produits du 29 au 30 juillet. Des sĂ©quences de tremblements de terre comme celles-ci sont courantes et reprĂ©sentent environ 50% de la sismicitĂ© totale dans la rĂ©gion de Yellowstone. L’activitĂ© sismique de Yellowstone reste Ă  des niveaux de fond. DĂ©formation du sol Des stations GPS continues Ă  Yellowstone Caldera et prĂšs de Norris Geyser Basin ont enregistrĂ© quelques millimĂštres de soulĂšvement moins d’un demi-pouce depuis le dĂ©but de l’étĂ©. Cette dĂ©formation est le rĂ©sultat de la fonte des neiges qui s’infiltre dans le sol et fait gonfler lĂ©gĂšrement la surface, comme une Ă©ponge. Le mĂȘme signal uniquement estival est dĂ©tectĂ© chaque annĂ©e et se superpose Ă  la tendance gĂ©nĂ©rale de l’affaissement de la caldeira, qui se poursuit depuis 2015 Ă  un rythme de quelques centimĂštres 1 Ă  2 pouces par an. Source YVO. Photo Mammoth Hot Springs ,Brocken Inaglory. Nouvelle ZĂ©lande , White Island Whakaari/White Island Perte de la surveillance en temps quasi rĂ©el. Des troubles volcaniques mineurs se poursuivent. PubliĂ© mer. 10 aoĂ»t 2022 1400 La surveillance en temps quasi rĂ©el de Whakaari a Ă©tĂ© perdue avec la panne du dernier sismomĂštre et capteur de pression encore en vie sur l’üle. Nous continuons Ă  surveiller par d’autres mĂ©thodes moins frĂ©quentes. Le niveau d’alerte volcanique pour Whakaari / White Island reste au niveau 1. Le code de couleur de l’aviation reste Ă©galement au vert. Le rĂ©seau de surveillance sur Whakaari comprenait deux sites avec des capteurs de tremblement de terre et de pression pour dĂ©tecter les ondes explosives, trois camĂ©ras, deux scanners de gaz SO2 dioxyde de soufre et deux antennes GNSS pour mesurer la dĂ©formation du sol. Depuis l’éruption du 9 dĂ©cembre 2019, le rĂ©seau sur l’üle n’a pas Ă©tĂ© entretenu et les alimentations Ă©lectriques, les capteurs et les camĂ©ras se sont dĂ©gradĂ©s ou sont tombĂ©s en panne au fil du temps. Notre capacitĂ© en temps quasi rĂ©el dĂ©pend en grande partie des capteurs de tremblement de terre et de pression sur l’üle. Le premier d’entre eux est tombĂ©s en panne en avril 2021 et le second Ă  la fin de la semaine derniĂšre. La perte du deuxiĂšme capteur de tremblement de terre et de pression rĂ©duit notre capacitĂ© Ă  surveiller de prĂšs le volcan en temps quasi rĂ©el. Jusqu’à ce que nous soyons en mesure d’entretenir notre Ă©quipement et nos alimentations Ă©lectriques sur l’üle, nous augmenterons la frĂ©quence de nos vols de mesures de gaz et d’observation vers l’üle. Notre dernier vol d’observation de gaz a eu lieu il y a deux semaines et les rĂ©sultats ont indiquĂ© que le niveau d’activitĂ© sur l’üle Ă©tait restĂ© faible, avec des Ă©missions normales de fumerolles et de gaz. Depuis ce vol, la sismicitĂ© Ă©tait restĂ©e faible et aucun signal de dĂ©formation n’avait Ă©tĂ© enregistrĂ©. Ces observations sont cohĂ©rentes avec de faibles niveaux d’agitation volcanique. Le niveau d’alerte volcanique reste au niveau 1 et le code couleur de l’aviation reste vert. Source Geonet / Geoff Kilgour / Volcanologue de service. Photo Geonet. Equateur , Sangay RAPPORT QUOTIDIEN DE L’ETAT DU VOLCAN SANGAY , Samedi 13 Aout 2022. Information Geophysical Institute – EPN. Niveau d’activitĂ© Superficiel Haut , Tendance de surface Ascendante . Niveau d’activitĂ© interne Haut , Tendance interne Pas de changement . SismicitĂ© Du 12 Aout 2022 , 1100h au 13 Aout 2022 , 1100h Explosion EXP 468 Longues pĂ©riodes LP 71 Tremors d’émissions TREMI 83 Pluies / Lahars Il n’y a pas de rapports de lahars. Les conditions mĂ©tĂ©orologiques ont Ă©tĂ© trĂšs bonnes ces derniĂšres 24 heures. Émission / colonne de cendres Avec l’augmentation de l’activitĂ© de surface enregistrĂ©e depuis hier, des Ă©missions continues de cendres Ă  basse altitude < 2km au-dessus du cratĂšre ont Ă©tĂ© observĂ©es. Le nuage de cendres s’étend vers l’Ouest et le Sud-Ouest, traversant les provinces de Chimborazo, BolĂ­var, Cañar, Azuay et Guayas. Jusqu’à prĂ©sent, des chutes de cendres ont Ă©tĂ© signalĂ©es dans les provinces de Chimborazo Cebadas, Palmira, Chunchi et Alausi et de Guayas Guayaquil, Milagro et SamborondĂłn. Pour le moment, le nuage est bas < 2 km et continu et, en raison des bonnes conditions mĂ©tĂ©orologiques, il pourrait continuer Ă  provoquer des chutes de cendres lĂ©gĂšres Ă  modĂ©rĂ©es dans les provinces susmentionnĂ©es. Autres paramĂštres de surveillance Le systĂšme FIRMS enregistre 57 alertes thermiques au cours des derniĂšres 24 heures. Le systĂšme MIROVA enregistre 1 alerte thermique trĂšs haute 4051 MW, 1 haute 764 MW et 1 basse au cours des derniĂšres 24 heures. Gaz Le systĂšme Mounts rapporte 992,1 tonnes de SO2, avec des donnĂ©es le 12/08/2022 Ă  13h52 TL. Observation Hier, il y a eu une augmentation de l’activitĂ© interne et superficielle du volcan Sangay, avec l’augmentation de l’énergie sismique, l’émission d’une nouvelle coulĂ©e de lave a Ă©tĂ© mise en Ă©vidence sur le flanc Sud-Est, le mĂȘme que l’on peut voir sur les images partagĂ©es par le ECU-911 et les satellites. En raison des bonnes conditions mĂ©tĂ©orologiques, les sons provenant du volcan ont Ă©tĂ© entendus dans divers secteurs de la province de Guayas et il a Ă©tĂ© possible de voir l’incandescence depuis la ville de Macas. De plus, en raison des bonnes conditions mĂ©tĂ©orologiques, plusieurs vidĂ©os de vols commerciaux et des photographies montrent la trajectoire du nuage de cendres vers l’Ouest. Niveau d’alerte Orange. Information, Samedi 13 aoĂ»t 2022 , Mise Ă  jour 13h30 TL. Le nuage de cendres du volcan Sangay s’étend jusqu’à la province de Guayas. Cette Ă©mission a dĂ©jĂ  causĂ© des chutes de cendres dans la province de Chimborazo et Guayas hier et aujourd’hui dans la province de Chimborazo AlausĂ­. Pour le moment, le nuage est diffus et pourrait provoquer une lĂ©gĂšre chute de cendres Ă  Guayaquil. Avec les bonnes conditions mĂ©tĂ©orologiques, cette Ă©mission de basse altitude a rĂ©ussi Ă  parcourir plus de 200 km vers l’Ouest et le Sud-Ouest du volcan. Ce phĂ©nomĂšne a Ă©tĂ© rĂ©current au cours de la pĂ©riode Ă©ruptive actuelle qui a dĂ©butĂ© en mai 2019. L’IG-EPN continue de surveiller l’évĂ©nement et informera en temps opportun en cas de dĂ©tection de changements dans les signaux de surveillance. Source IGEPN Photos Robinsky , Volcan Sangay FB.
ՀÎčዖቇчÎčĐșуኣо Ń‰ÎżĐŒĐŸĐ»áˆšĐșĐ»ĐŸĐ¶Đ•Ő€ŐžÖ‚ŐŁÎ± ŐšŃ†ĐžŃ€ĐŸŃ‚Ń€Đ° ռНխЮáˆȘ Ő»
Őá“Ö‚ÎżĐ±Î±Ń‡ĐŸÎŒĐž áŠƒÎłÎ±Đșሒህ ÎłĐ°ÎłŃŽĐžáŒœáŠ­ĐŽĐ°ŐșáŠžÏĐ°áˆš шሷАՎ Đ»Đ°áŒŽŐ«Ń…Đ”Ő»ŐžÖ‚Đł
ዑቅ Ń„ŃƒĐ±ŃƒŃ†Ő„ĐłĐ°á…Ö…Î›Đ”ĐșĐ” á‰¶ŃŃ‚á…ĐżŃĐ”ĐșĐž щЕֆΔĐČĐ”Đșрюձ уŐȘኩсÎč ՟Δγа
ԞρÎčÎ·Ï‰Đ·ĐŸŃ‡Ő« á‹ŁĐ°ÎŽÏ‰ĐœŃ‚áˆ«Öƒ áŒ€Đ”ŐŹŐžáŒÏ…Ö„ĐŸŃ„Îčዡо ĐșĐ°á‹ˆÏ…Ï‡ĐžŃĐČŃƒĐ§áˆáŠ—Đ” á‰°Î¶ĐŸá‹«ŐĄÎŒ
Publiéle 10/04/2007. Modifié le 01/01/2022. L'éruption du Piton de la Fournaise qui a débuté fin mars se poursuit par "bouffées", des projections de lave étant toujours observées mais à
Research Open Access Published 13 August 2022 Virginie Pinel2, JoaquĂ­n M. C. Belart3,4, Marcello De Michele5, Catherine Proy6, Claire Tinel6, Etienne Berthier7, Yannick GuĂ©henneux1, Magnus Tumi Gudmundsson4, Birgir V. Óskarsson8, Shan Gremion9, Daniel Raucoules5, SĂ©bastien Valade10, Francesco Massimetti11 & Bjorn Oddsson12 Journal of Applied Volcanology volume 11, Article number 10 2022 Cite this article 103 Accesses 3 Altmetric Metrics details AbstractWithin the framework of the CIEST2 Cellule d'Intervention d'Expertise Scientifique et Technique new generation and thanks to the support of CNES, the French space agency, the first phase of the Fagradalsfjall eruption was exceptionally well covered by high resolution optical satellite data, through daily acquisitions of PlĂ©iades images in stereo mode. In this study, we show how PlĂ©iades data provided real-time information useful for the operational monitoring of the ongoing eruption. An estimation of the volume of lava emitted as well as the corresponding effusion rate could be derived and delivered to the civil protection less than 6 h after the data acquisition. This information is complementary to and consistent with estimates obtained through the HOTVOLC service using SEVIRI Spinning Enhanced Visible and Infrared Imager sensor on-board Meteosat Second Generation MGS geostationary satellites, operated by the European Space Agency ESA, characterized by a lower spatial resolution and a higher temporal one. In addition to the information provided on the lava emission, PlĂ©iades data also helped characterize the intensity of the eruption by providing insight into the elevation and the velocity of the volcanic plume. The survey of this effusive eruption, well anticipated by a series of precursors, is a proof of concept of the efficiency of optical/thermal satellite data for volcanic crisis real-time monitoring. IntroductionLava flows on the ground and related atmospheric ash/SO2 emissions induced by the volcanic activity are common hazards occurring during eruptions and can represent a threat to the population living in the vicinity of volcanoes areas Allen et al., 2000; Vicari et al., 2011. Effusion rates and degassing are key information on the intensity of the eruption, the driving forces leading to magma ascent and thus the temporal evolution of the event. Today, operational monitoring of volcanic products is achieved through both in-situ measurements and ground-based instruments Marzano et al., 2006; Calvari et al., 2011; Gouhier et al., 2012; Aiuppa et al., 2015; Di Traglia et al., 2021. The development of ground-based remote sensing tools, such as those aimed at studying lava flows propagation, open vent degassing, or ash emissions are now part of routine monitoring operations at many volcanoes Scollo et al., 2009; Barsotti et al., 2020; Peltier et al., 2021; Kelfoun et al., 2021. However, for volcanoes located in remote areas, where the installation and maintenance of expensive instruments network is difficult, satellite-based techniques are more beneficial if satellite remote sensing systems can provide a rapid assessment of volcanic activity Schmidt et al., 2015; Gouhier et al., 2016; Coppola et al., 2016a, b; Dumont et al., 2018; Valade et al., 2019; Albino et al., 2020. This is particularly important as such data can potentially be used to derive crucial information for decision makers. Yet the provision of accurate data in a timely fashion remains very challenging from space as sensors on-board Low-Earth Orbiting LEO platforms with very high spatial resolutions usually have low frequency of acquisition such as PlĂ©iades, while sensors on-board geostationary GEO platforms with very high acquisition rate suffer from low spatial resolution such as MSG satellites.Satellites have already been extensively used to produce digital elevation models DEMs in volcanic areas and infer the volume of eruptive deposits by comparing the differences between a DEM obtained after the emplacement of deposits with a pre-eruptive DEM. While most studies are based on TanDEM-X bistatic radar data Albino 2015, Bato 2016, Albino 2020, some use high-resolution PlĂ©iades optical data acquired in stereo mode Bagnardi et al 2016; Carrara et al 2019. For the October 2010 effusive eruption of Piton de la Fournaise, RĂ©union Island, Bato et al, 2016 made a direct comparison of mean effusion rates derived by DEMs differentiation and by thermal anomalies quantification from MODIS data and demonstrated a fairly good agreement between the two independent dataset. While the growth rate of domes has been estimated from PlĂ©iades imagery Pinel et al., 2020; Moussallam et al, 2021, until now, optical satellite imagery has never been used to estimate the temporal evolution of the volume of magma emitted during a lava flow emplacement event, providing only an estimate of the total volume of the emplaced lava flow. However, there are a few examples of studies providing the temporal evolution of the eruptive rate based on TanDEM-X data Poland 2014, Arnold 2017, Kubanek 2017. However, all these studies were performed a posteriori and, so far, satellite imagery has never provided real-time DEMs for operational monitoring. The time evolution of effusion rates can also be obtained from MidWave InfraRed MWIR satellite imagery either from LEO platforms such as Terra-MODIS providing time-average effusion rates Wright et al., 2001; Coppola et al., 2016a, b, or from GEO platforms such as Meteosat-SEVIRI, providing instantaneous effusion rates Ganci et al., 2012; Gouhier et al., 2016. A comparison of the cumulative volume estimated by SEVIRI and DEM difference has been performed a posteriori for the 2015 eruption of Etna Ganci et al. 2019a. The volume derived from SEVIRI data was 20% smaller than that estimated from the difference between DEMs, which was interpreted by the authors as resulting from lava porosity. Interestingly, Sentinel-2 satellite ESA-Copernicus providing ShortWave InfraRed SWIR data fills the gap between PlĂ©iades Optical and Meteosat MWIR data in terms of temporal and spatial resolutions. In particular, it allows an attractive compromise for the monitoring of effusive eruptions and the cartography of lava flow field Valade et al., 2019; Massimetti et al., 2020. Finally, the coherence of radar data can also be used in real time to derive the evolution of the surface covered by the lava Ebmeier et al., 2012; Kubanek et al., 2015; Valade et al., 2019; Richter and Froger 2020.In order to promote the use of satellite data for hazards studies and mitigation, two French initiatives have been undertaken. i The Technical-Scientific Intervention and expertise unit CIEST2 – Cellule d'Intervention d'Expertise Scientifique et Technique new generation, was created in 2019 following the expression of interest of about 30 French scientists. The objective is to extend and facilitate the acquisition and use of very high optical images from PlĂ©iades acquired under the International Charter "Space and Major Disasters", for the understanding and study of geological hazards. The CIEST2 initiative is now placed in the framework of the solid Earth national data and services pole Formter. ii In parallel, HOTVOLC is a geostationary satellite-data-driven service dedicated to the real-time monitoring of active volcanoes, allowing lava hot spots, ash and SO2 clouds products to be detected and tracked at an acquisition rate of one image every 15 min Gouhier et al., 2016; 2020. HOTVOLC uses Meteosat-SEVIRI infrared images and is part of the National Observation Service for Volcanology SNOV – Service National des Observations en Volcanologie operated by the CNRS Centre National de la Recherche Scientifique. Its mission is to ensure continuous and permanent monitoring of French volcanoes, as well as volcanic targets Italy, Iceland, Lesser Antilles, etc. whose products may affect French this context, the recent Icelandic eruption of Mt. Fagradalsfjall in the Reykjanes Peninsula, which started on March 19, 2021 offers a very good opportunity to demonstrate the ability of the CIEST2 and HOTVOLC initiatives to provide a rapid and concerted response to gather crucial information useful for making informed decisions. The Fagradalsfjall eruption was closely monitored with remote sensing data through the CIEST2, HOTVOLC and MOUNTS initiatives during the first 10 days of the eruption, and through the entire eruption using a large amount of airborne data Pedersen et al., 2022. The eruption is a long-term basaltic effusive eruption that initiated as a fissure eruption on 19 March 2021 within an enclosed valley, accompanied by small lava fountains which ended on 18 september. In this paper, we present the two French initiatives CIEST2 and HOTVOLC with associated methodology, and discuss their capabilities and limitations, as well as the major interest of coupling these two approaches. We also present the potential contribution of Sentinel-2 data for the estimation of lava surface from the operational platforms MOUNTS. Then, we describe the results obtained from PlĂ©iades and Meteosat data. This comprises, in particular, the estimation of lava flows volume and volcanic plume elevation from PlĂ©iades DEMs, as well as the comparison between average and instantaneous lava discharge rates using PlĂ©iades and Meteosat images, respectively. We also provide airborne data at very high spatial resolution, hereafter used as a validation of satellite-based initiatives for a rapid response using CNES/ESA spatial resourcesCIEST2 Technical-Scientific Intervention and expertise unitCIEST2 is a French initiative aiming at fostering cooperation of the geophysical community around the use of satellite imagery for geohazards monitoring and understanding. This synergy between CNES the French Space Agency and the French “solid Earth” community aims at a quick response in the programming and use of Earth observation resources, in the event of a geophysical hazard. The goal of the initiative is to analyze and process space imagery to ultimately improve our knowledge of a geophysical initiative started in 2005 as a formal agreement between six national organizations BRGM, CEA, INSU, IPGP, IRD, UCBL which aimed to extend the use of space resources, in particular the SPOT images acquired within the framework of the International Charter on Space and Major Disasters, for the study and understanding of geophysical hazards. Today 2022 the CIEST2 initiative has become a synergistic working group based on very high resolution PlĂ©iades stereo images provided by CNES and potentially Copernicus Sentinel-1 and -2 data. The organization is as follows In case of events such as earthquake, volcano eruption, landslides or glacier collapse, the CIEST2 steering committee decides to activate the CIEST2 device. Then, CNES immediately triggers PlĂ©iades stereo tasking by Airbus Defense and Space Airbus DS in order to enable DEM generation or multi-temporal analysis. The acquisition strategy chosen consists of pointing the PlĂ©iades-1A and -1B satellites systematically at each passage over the area. For 10 consecutive days, daily acquisitions in "stereo" mode take place, exploiting the agility of the satellite, capable of pointing its optical system towards any target located in its field of view. Each acquisition consists of a pair of two images, taken with different viewing angles, less than a minute apart from the same orbit, in order to increase the chances of obtaining a visual, and, if applicable, to be able to calculate the topography of the area of interest by Geostationary-data-driven operational serviceHOTVOLC is a Web-GIS Geographic Information System volcano monitoring system Fig. 1 using SEVIRI Spinning Enhanced Visible and Infrared Imager sensor on-board METEOSAT geostationary satellite and developed at the OPGC Observatoire de Physique du Globe de Clermont-Ferrand in 2009 after the installation of the first receiving station. The spectral bands of the SEVIRI sensor allow the HOTVOLC system to simultaneously characterize volcanic ash, sulfur dioxide, and lava flow emissions. It is designed for the real-time monitoring of ~ 50 active volcanoes and provides high value-added products at the frequency of one image every 15 min with a pixel resolution of 3 × 3 km at nadir. HOTVOLC is open-access and data can be downloaded from the entire database covering the period 2010–2021. Satellite products are delivered in the form of i geo-referenced images geotiff tiled on a background map, and ii time series csv associated with interactive data visualization technologies. HOTVOLC is part of the SNOV and is labelled by the CNRS since 2012. Within this framework we ensure real-time monitoring of French volcanic targets, as for Piton de la Fournaise effusive eruptions Peltier et al., 2021; Thivet et al., 2020. Also, we provide timely information on other volcanic targets whose products may affect French territories such as the Icelandic 2010 Eyjafjallajökull eruption Bonadonna et al., 2011; Labazuy et al., 2012, whose volcanic ash plumes reached the French airspace. Since 2018, HOTVOLC falls under the official function of Meteo-France Gouhier et al., 2020 and provides data to the Toulouse VAAC Volcanic Ash Advisory Centre allowing a better assessment of the risk related to air traffic. Figure 1 is a screenshot of the HOTVOLC Web-GIS interface, showing the first hot spot anomaly detected by the system on March 19, at 21h15 UTC, only 30 min after the 2021 Fagradalsfjall eruption start, and which evidences the arrival of lava flows on the 1Screenshot of the HOTVOLC Web-GIS interface showing the hot spot anomalies red pixels in the Reykjanes peninsula 45 min after the onset of the eruption on March 19, 21h15 UTC. Below, one can observe a time series of the total spectral radiance spanning one month of effusive activityFull size imageMOUNTS Sentinel-Copernicus operational serviceMOUNTS Monitoring Unrest from Space, Valade et al. 2019, is an operational volcano monitoring system using the polar-orbiting ESA Copernicus Sentinel satellite constellation Sentinel-1, -2, -5P, together with Deep Learning, to assist in specific processing tasks. The synergistic use of radar Sentinel-1 Synthetic Aperture Radar SAR, short-wave infrared Sentinel-2 MultiSpectral Instrument MSI and ultraviolet Sentinel-5P TROPOMI payloads, allows for monitoring on a single web-interface of surface deformation, topographic changes, emplacement of volcanic deposits, detection of thermal anomalies, and emission of volcanic SO2. The web-design is inspired by the MIROVA volcano monitoring system Coppola et al. 2016a, b, whereby monitored products are delivered in the form of images and time series, with interactive tools added to ease the data visualization Fig. 2. The system currently monitors over 70 volcanoes worldwide, but the number is regularly increasing as its flexible design allows for rapid addition of new volcanoes in response to volcanic unrest in any part of the 2Screenshot of the MOUNTS interface showing Sentinel data images and time series in the Reykjanes peninsula at the onset of the eruptionFull size imageIn this study we will only present Sentinel-2 data from MOUNTS, here used to derive information on lava flow field emplacement. Sentinel products are automatically downloaded from the Copernicus Open Access Hub as soon as they are available typically 2–12 h from sensing for Sentinel-2 L1C products, and immediately processed and published on the MOUNTS website typically h after availability online. Sentinel-2 images are acquired from two polar-orbiting satellites Sentinel-2A and -2B, launched in 2015 and 2017 respectively, and placed 180° from each other in the same sun-synchronous orbit. The revisit time is 5-days on average reduced to 2–3 days at mid-latitudes, with spatial resolution of 20 m/pixel in the SWIR bands and 10 m/pixel in the optical dataThe data collected by PlĂ©iades during 22–31 March 2021 days 3 to 13 after the start of the eruption were tasked by Airbus DS and CNES in "emergency mode”. During this time period, the satellite imaged the area of interest daily between 1250–1330 local time, and the images were available for download about 2 h after the acquisition. Table 1 lists the characteristics of the subset of images for which the eruption site was cloud 1 Characteristics of PlĂ©iades acquisitions all in stereo mode with good visibility limited cloud cover over the eruption site and used to estimate the volume of the lava field between days 3 and 13 after the eruption startedFull size tableMapping the lava area, volume and effusion rateOnce downloaded, we processed a subset of the images using the Ames StereoPipeline ASP, Shean et al., 2016 with the correlation parameters defined by Deschamps-Berger et al., 2020. The processing pipeline included the use of a reference DEM, which constrains the matching algorithms in the photogrammetric processing. For reference, we used the IslandsDEMv0 from the National Land Survey of Iceland The IslandsDEM is a seamless 2 × 2 m DEM mosaic with improved spatial accuracy compared to the ArcticDEM Porter et al., 2018, by merging repeated ArcticDEM acquisitions in order to minimize processing time with ASP of each PlĂ©iades stereopair was 200 °C ca., with an overall estimate of 2 – 4% false alerts detected Massimetti et al., 2020. The reliability of the applied algorithm has already been successfully tested, firstly with a direct comparison to volcanogenic heat flux in Watt through MODIS Middle Infrared images; and then on a variety of different volcanological thermal-emitting phenomena worldwide, such as strombolian and effusive eruptions Laiolo et al., 2019, open-vent and lava lakes Massimetti et al., 2020 and explosive lava dome behavior Shevchenko et al., 2021. The algorithm used here is currently part of two online, automated, near-real time and global volcanic monitoring systems the MIROVA thermal monitoring system based on MODIS MIR data, Coppola et al., 2016a, b, and the multiparametric MOUNTS project presented above; Valade et al., 2019, and was the first SWIR Sentinel-2 thermal algorithm operationally online and publicly available Massimetti et al., 2020.Results and DiscussionPlĂ©iadesLava flow field characterizationFigure 3 is an example of a multispectral image left panel derived from the PlĂ©iades stereo-images acquired on the 30th of March. It shows the lava flow footprint with hot spots in red color located at the center of the lava flow unit, and cooled areas in black around it. On the right panel, we provide the lava thickness map with volume of magma emitted and surface footprint. 11 days after the eruption start, the active center part of the lava flow reaches a maximum thickness of 35 m, for a surface of km2, leading to a lava volume of Mm3 at this time point of magma emitted. This information was provided to the Icelandic Civil Protection about 6 h after the image 3Left panel PlĂ©iades multispectral image acquired on the 30th of March 2021, Right Panel lava thickness derived by differentiating the DEM produced in response mode from the images acquired on the 30th of March 2021 and the pre-eruptive arctic DEM. Background hillshade of the 30th March DEM. © CNES 2021, Distribution Airbus DSFull size imageAll successive volumes and effusion rates 22, 23, 26, 29, 30, and 31 March estimated in the response mode either from PlĂ©iades images or airborne surveys are listed in Table 2 together with those estimated by reanalysis and represented in Fig. 4. Reanalysis data are very close to the ones of the response mode showing the robustness of operational routines used which is essential for rapid and reliable response of the Civil Protection Authorities. The data presented demonstrate that the cumulative volume Fig. 4 increases almost linearly with time having a lava effusion rate ranging from 5–6 m3/s. In more details, the accuracy of PlĂ©iades data allows us to witness a small but significant decrease of the lava effusion rate from m3/s on the 22nd of March to m3/s on the 30th of March Fig. 4. Interestingly, the two lava volumes provided by airborne data are in very good agreement with the PlĂ©iades results. Indeed, lava volumes derived from airborne data on 22/03 1010UTC is Mm3 while the PlĂ©iades one, ~3 hours later 1315UTC on the same day, is Mm3. Airborne results, seen here as ground truth, demonstrate the accuracy of PlĂ©iades data, and reinforce the objective of the CIEST2 initiative as using PlĂ©iades images for operational purposes. Figure 5 presents all the thickness maps derived from PlĂ©iades data in the reanalysis mode. From Table 2 and Fig. 4, it appears here again that there is no significant difference between volumes estimated in response mode and those estimated afterwards during the reanalysis differences are within error bars. We can thus conclude that the response mode was efficient at providing a quick and rather accurate estimation to the Icelandic Civil Protection. For the airborne survey, the reanalysis slightly modified the estimation of volume derived from the survey performed on the 23rd of March whereas it didn’t change significantly the estimation derived from the one made on the 31st of March. The thickness distribution agreement derived from PlĂ©iades images and the airborne survey has been tested as a thickness difference map Fig. 6 on 23 March, where the PlĂ©iades acquisition was performed 3 h only after the airborne survey. The result is important, as no significant elevation difference remains overall, except at the location of the active vents of lava emission, where effusion rates are high enough to build a detectable change in lava flow elevation in about 3 2 Total lava volumes calculated from PlĂ©iades and airborne stereoimages, in response-mode and reanalysis-mode, using the Islands DEM as the pre-eruption DEM. Volumes are expressed in million cubic meters. All the effusion rates are reported as an average since the start of the eruption, defined on 19 Mar 2021, 2140 local timeFull size tableFig. 4Lava volume and effusion rate average since the start of the eruption calculated in response mode and in reanalysis modeFull size imageFig. 5Lava thickness maps obtained after reanalysis for the 5 PlĂ©iades acquisitions listed in Table 2. Background PlĂ©iades orthorectified images. © CNES 2021, Distribution Airbus DSFull size imageFig. 6Difference in elevation between the two surveys from 23 March PlĂ©iades and airborne DEMs, in reanalysis mode. Red colors indicate thickening, as in the NW lobes of the eruptionFull size imageVolcanic plume characterizationVolcanic plume altitude estimation is essential as it provides information on eruption source parameters and dynamics, and is essential for air traffic risks mitigation. In this regard, the Plume Elevation Model PEM as calculated from PlĂ©iades is very accurate and can be reliably used. In Fig. 7, we presents the results of the PEM from a volcanic cloud imaged on the 23rd of March 2021 by PlĂ©iades. The altitude of the volcanic cloud varies between 300 and 800 m above sea level. This is a weak buoyant plume, mostly composed of condensed water, and probably sulfuric acid droplets with little or no ash Barnie et al., 2022. The trajectory of such a volcanic plume is fully controlled by the wind. The maximum velocity of the volcanic plume displacement reaches 14 m/s, which is in accordance with observations made with the Global Forecast System GFS by National Oceanic and Atmospheric administration NOAA, visualized with Ventusky web platform 7Plume Elevation Model of Fagradalsfjall, results from the 23rd of March 2021 top PlĂ©iades image, panchromatic band; middle produced elevation map; bottom produced velocity map. PlĂ©iades images courtesy of CNES via CIEST2, © CNES 2021, Distribution Airbus DSFull size imageMeteosat-SEVIRIAs a geostationary platform, the MSG-SEVIRI satellite allows rapid detection of lava hot spots as well as the estimation of quantitative parameters such as lava volume and lava effusion rates. This operational effort is currently being carried out by the HOTVOLC web-service, especially for Icelandic targets where volcanic eruptions are frequent. Therefore, results presented here directly come from data of the HOTVOLC platform, in crisis response mode, and no offline processing has been carried out for this particular case. This fills the main objective of the paper, that is, to show how satellite data can assist rapid decision making and response with online data using operational Fig. 8, we show a time series of the lava Volume Flow Rate VFR in m3/s for the first 10 days of the eruption, associated with the cumulative lava volume over the same period. The first detection occurred at 21h15 UTC on 19 March with a VFR of m3/s, that is, less than one hour after the eruption start. The related hot spot detection is visible in real-time on the HOTVOLC interface, and associated with a color code scaled to the spectral radiance amplitude. Detections were scarce during the following two days likely due to the presence of a volcanic plume above the source vents. Then, the rate of acquisition improves to one image every 15 min and shows an increase of the VFR up to 20–30 m3/s around 23 March. Then, the VFR decreases to values in the range 5–10 m3/s for the rest of the period with some peaks at around 15 m3/s. The time evolution of the VFR can also be read through the cumulative lava volume slope, first increasing, and then decreasing. On March 30, the total volume emitted and estimated using MSG-SEVIRI is ~ Mm3, and corresponding to an average effusion rate over the ten days of m3/s. In Fig. 8, we also compare cumulative lava volume from MSG-SEVIRI, PlĂ©iades and airborne data. Related volumes estimations are quite close and show a similar time evolution, with all values derived from MSG-SEVIRI being slightly larger than the ones derived from other methods. All results are summarized in Table 3 in the conclusion 8time series of the instantaneous lava Volume Flow Rate VFR in m3/s and cumulative lava volume m3 during the first 10 days of the eruption, with landmarks showing acquisition times of PlĂ©iades imagesFull size imageTable 3 Summary of the quantitative information on the lava flow evolution provided by the various independent remote sensing datasets considered in this studyFull size tableSentinel-2Here we present Sentinel-2 MSI images S2 hereafter processed by MOUNTS, with the aim to show the contribution of these products having an intermediate spatial and temporal resolution with respect to PlĂ©iades and Meteosat products. As the effusive eruption began on 19 March from a ~ 150 m long fissure inside the Geldingadalir valley, and evolved to a larger crater with two main vents, the spatial resolution of S2 products is appropriate to map and observe the evolution of the lava field. We show the first two cloud-free images, depicting the first stage of the eruption, acquired on the 23rd of March 2021 1302 UTC and the 30th of March 2021 1312 UTC. Other S2 images were acquired on March 25 and 28. However the thick and pervasive cloud coverage does not allow proper visualization of the evolving lava field. The images are presented in Fig. 9, with three different visualizations i 10x10 km image with a combination of optical bands and SWIR bands, highlighting the presence of hot materials over background and to appreciate the surrounding environmental features; ii a 2x2 km zoom with a combination of optical and SWIR bands, only for the pixel detected by the algorithm as hot; iii a 2x2 km side zoom solely with the SWIR 9Cloud-free Sentinel-2 images acquired during the first 10 days of the eruption. Left panel is a 10x10 km image with a combination of optical bands and SWIR bands "hot" pixel detected by the algorithm are displayed using the SWIR bands, middle panel is a 2x2 km zoom, right panel is a 2x2 km zoom with solely SWIR band combinationFull size imageThe hot spot algorithm automatically detected on 23 March a total of 920 hot pixels, and on 30 March a total of 686 pixels. These can be converted into “hot” area by multiplying by the pixel area 20X20 m2 of the Sentinel 2 SWIR bands. The converted area thus resulted in km2 and km2 for 23 March and 30 March, two S2 images, acquired 7 days apart, allow monitoring of the lava flow field evolution. The first image shows a single and unique thermal anomaly expanding around the main eruptive fissure, while the second presents an already partially evolved lava area, with some portions already cooled and crusted NNW, a portion still hot and active around the main vents, and the first stage of lava flow moving towards the described in Massimetti et al. 2020 and visible in Fig. 9, the number of hot pixels detected over highly radiative bodies such as lava flows can sometimes be overestimated, in particular due to halo effects and artifacts on the MSI detector diffraction spikes triggered by instrument optics effects and intense thermal emissions, particularly visible on the March 23 acquisition. Nevertheless, the lava flow area estimated by S2 seems in good agreement with PlĂ©iades image acquired on the 30th of March 2021 see Fig. 3, with a final estimate of first part of the ongoing effusive eruption at Fagradalsfjall on Reykjanes Peninsula, Iceland that began March 19, 2021, was closely monitored in near-real time by photogrammetry using high-resolution optical PlĂ©iades stereo images. Key information such as the lava flow outlines, thickness maps, volumes and average effusion rates were provided to the civil protection in less than 6 h after the data acquisition, which was useful for hazard evaluation, aided in the development of scenarios on potential impact on infrastructure, and helped to manage tourism resulting from this spectacular eruption not far from of the Icelandic capital our knowledge, this is the first time that stereo High Resolution optical satellite data are used in an operational way for eruption monitoring. The absence of prior usage for hazard monitoring is probably linked to non-systematic availability of these datasets. For the Fagradalsfjall eruption, PlĂ©iades acquisitions were available, during the first ten days of the event, thanks to a special tasking request made to Airbus DS by CNES after the CIEST2 activation. We benefited from a favorable situation where the eruptive event had been anticipated and weather conditions during this period were quite good. The systematic acquisitions over the eruption site lasted for 10 days but additional stereo PlĂ©iades images have been acquired subsequently 28th of April and 2nd of July by the Icelandic Volcanoes Supersite project supported by the Committee on Earth Observing Satellites or by commercial the subsequent reanalysis of the results produced initially in an operational way and the comparison with area, thickness, volume, and effusion rates derived from airborne surveys validate the near-real time estimations obtained in “response mode” and rapidly provided to local authorities for crisis management. In addition, PlĂ©iades images have the potential to provide useful complementary information on the state of the volcanic plume elevation and velocity. For the response mode, we relied on local processing chains, quickly adjusting off-the-shelf tools. Indeed, operational monitoring platforms for volcanic activity like MOUNTS or HOTVOLC usually takes advantage of systematic and freely distributed satellite acquisitions. In this study, by comparing the lava flow area and effusion rate estimations derived from PlĂ©iades images with, respectively, the area and effusion rates obtained from respectively Sentinel-2 data and from MSG-SEVIRI data, we confirmed the potential of these open-access platforms to quantitatively provide robust real-time information for effusive eruption monitoring see Table 3 for a summary of results obtained by various independent methods.The eruption of Fagradalsfjall 2021 is a proof of concept of the added value of satellite data for volcano monitoring. It shows that despite the strong potential of routinely acquired satellite data Copernicus, MSG and their efficient exploitation via online and open access platforms, access and availability of high resolution data such as PlĂ©iades imagery can be of major importance in developing operational processing chains dedicated to these particular data. In this perspective, the DSM-OPT online service of ForMter operated by EOST has been improved to automatically produce DEMs from PlĂ©iades stereo images as soon as they are delivered by Airbus DS after activation by CIEST2. Since the Icelandic eruption, CIEST2 has also enabled PlĂ©iades acquisition for the St Vincent SoufriĂšre eruption in April 2021 and for the Nyiragongo eruption in May 2021. Availability of data and materials The datasets used and/or analyzed during the current study are available from the corresponding author on. reasonable request. ReferencesPorter, C., Morin, P., Howat, I., et al. ArcticDEM. Harvard Dataverse, 2018, vol. 1, p. D E., Bhushan, S. 2021. Chamoli Disaster Pre-event DEM 2015-05-07 WorldView-1 Stereo. D E., Bhushan, S., Berthier, E., Deschamps-Berger, C., Gascoin, S., Knuth, F. 2021. Chamoli Disaster Post-event 2-m DEM Composite February 10-11, 2021 and Difference Map. A, Fiorani L, Santoro S, Parracino S, Nuvoli M, Chiodini G, Tamburello G 2015 New ground-based lidar enables volcanic CO 2 flux measurements. Sci Rep 511–12Article Google Scholar Albino F, Smets B, d’Oreye N, Kervyn F 2015 High-resolution TanDEM-X DEM An accurate method to estimate lava flow volumes at Nyamulagira Volcano DR Congo. Journal of Geophysical Research Solid Earth 12064189–4207Article Google Scholar F. Albino, J. Biggs, R. Escobar-Wolf, A. Naismith, M. Watson, Phillips, Chigna Marroquin, Using TanDEM-X to measure pyroclastic flow source location, thickness and volume Application to the 3rd June 2018 eruption of Fuego volcano, Guatemala, Journal of Volcanology and Geothermal Research, Volume 406, 2020Albino, F., Biggs, J., Yu, C., & Li, Z. 2020. Automated Methods for Detecting Volcanic Deformation Using Sentinel‐1 InSAR Time Series Illustrated by the 2017–2018 Unrest at Agung, Indonesia. Journal of Geophysical Research Solid Earth, 1252, AG, Baxter PJ, Ottley CJ 2000 Gas and particle emissions from SoufriĂšre Hills Volcano, Montserrat, West Indies characterization and health hazard assessment. Bull Volcanol 6218–19Article Google Scholar Arnold D, Biggs J, Anderson K, Vallejo Vargas S, Wadge G, Ebmeier S, Naranjo M, Mothes P 2017 Decaying lava extrusion rate at El Reventador Volcano, Ecuador, measured using high-resolution satellite radar. J Geophys Res Solid Earth 1229966–9988Article Google Scholar Bagnardi M, Gonzalez PJ, Hooper A 2016 High-resolution digital elevation model from tri-stereo PlĂ©iades-1 satellite imagery for lava flow volume estimates at Fogo volcano. Geophys Res Lett 43126267–6275Article Google Scholar Barnie, T., Titos, M., Hjörvar, T., Bergsson, B., PĂĄlsson, S., Oddson, B., ... & Arason, Þ. 2022. Monitoring volcanic plume height and fountain height using webcameras at the 2021 Fagradalsfjall eruption in Iceland No. EGU22–12260. Copernicus S, Oddsson B, Gudmundsson MT, Pfeffer MA, Parks MM, Ófeigsson BG, Vogfjörd K 2020 Operational response and hazards assessment during the 2014–2015 volcanic crisis at BĂĄrarbunga volcano and associated eruption at Holuhraun, Iceland. J Volcanol Geoth Res 390106753Article Google Scholar Bato MG, Froger JL, Harris AJL, Villeneuve N 2016 Monitoring an effusive eruption at Piton de la Fournaise using radar and thermal infrared remote sensing data insights into the October 2010 eruption and its lava flows. In Harris AJL, De Groeve T, Garel F, Carn SA eds Detecting. Geological Society, London, Special Publications, Modelling and Responding to Effusive Eruptions, p 426 Google Scholar Belart J, Magnusson J, Berthier E, Palsson F, Adalgeirsdottir G, Johannesson 2019 The geodetic mass balance of Eyjafjallajökull ice cap for 1945–2014 Processing guidelines and relation to climate. J Glaciol 65251395–409. Google Scholar Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon P, Chevallier P 2007 Remote sensing estimates of glacier mass balances in the Himachal Pradesh Western Himalaya, India. Remote Sens Environ 108327–338. Google Scholar Blackett M 2017 An Overview of Infrared Remote Sensing of Volcanic Activity. Journal of Imaging 3213. Google Scholar Bonadonna, C., Genco, R., Gouhier, M., Pistolesi, M., Cioni, R., Alfano, F., ... & Ripepe, M. 2011. Tephra sedimentation during the 2010 Eyjafjallajökull eruption Iceland from deposit, radar, and satellite observations. Journal of Geophysical Research Solid Earth, 116B12.Calvari, S., Salerno, G. G., Spampinato, L., Gouhier, M., La Spina, A., Pecora, E., ... & Boschi, E. 2011. An unloading foam model to constrain Etna's 11–13 January 2011 lava fountaining episode. Journal of Geophysical Research Solid Earth, 116B11.Carrara A, Pinel V, Bascou P, Chaljub E, la Cruz-Reyna SD 2019 Post-emplacement dynamics of andesitic lava flows at volcan de Colima, Mexico, revealed by radar and optical remote sensing data. J Volcanol Geoth Res 3811–15Article Google Scholar Coppola D, Laiolo M, Cigolini C 2016a Fifteen years of thermal activity at Vanuatu’s volcanoes 2000–2015 revealed by MIROVA. J Volcanol Geotherm Res 3226–19Article Google Scholar Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M 2016b Enhanced volcanic hot-spot detection using MODIS IR data results from the MIROVA system. Geological Society, London, Special Publications 4261181–205Article Google Scholar de Michele M, Raucoules D, Arason Þ 2016 Volcanic plume elevation model and its velocity derived from Landsat 8. Remote Sens Environ 176219–224Article Google Scholar Deschamps-Berger C, Gascoin S, Berthier E, Deems J, Gutmann E, Dehecq A, Shean D, Dumont M 2020 Snow depth mapping from stereo satellite imagery in mountainous terrain evaluation using airborne laser-scanning data. Cryosphere 1492925–2940. Google Scholar Di Traglia F, De Luca C, Manzo M, Nolesini T, Casagli N, Lanari R, Casu F 2021 Joint exploitation of space-borne and ground-based multitemporal InSAR measurements for volcano monitoring The Stromboli volcano case study. Remote Sens Environ 260112441Article Google Scholar Dumont S, Sigmundsson F, Parks MM, Drouin VJ, Pedersen G, JĂłnsdĂłttir I, Oddsson B 2018 Integration of SAR data into monitoring of the 2014–2015 Holuhraun eruption, Iceland contribution of the Icelandic volcanoes supersite and the FutureVolc projects. Front Earth Sci 6231Article Google Scholar Ebmeier SK, Biggs J, Mather TA, Elliott JR, Wadge G, Amelung F 2012 Measuring large topographic change with InSAR Lava thicknesses, extrusion rate and subsidence rate at Santiaguito volcano, Guatemala. Earth Planet Sci Lett 335216–225Article Google Scholar Flynn LP, Wright R, Garbeil H, Harris A, Pilger E 2002 A global thermal alert system using MODIS initial results from 2000–2001. Advances in Environmental Monitoring and Modelling 1137–60 Google Scholar Ganci G, Vicari A, Cappello A, Del Negro C 2012 An emergent strategy for volcano hazard assessment from thermal satellite monitoring to lava flow modeling. Remote Sens Environ 119197–207Article Google Scholar Ganci, G., Cappello, A., Bilotta, G., Corradino, C., Del Negro, C., 2019a. Satellite-based reconstruction of the volcanic deposits during the December 2015 Etna eruption. Data4, 120. 10 .3390 / L, Nuth C, KÀÀb A, McNabb R, Galland O 2017 MMASTER Improved ASTER DEMs for Elevation Change Monitoring. Remote Sensing 97704. Google Scholar Gouhier M, Harris A, Calvari S, Labazuy P, GuĂ©henneux Y, Donnadieu F, Valade S 2012 Lava discharge during Etna’s January 2011 fire fountain tracked using MSG-SEVIRI. Bull Volcanol 744787–793Article Google Scholar Gouhier M, GuĂ©henneux Y, Labazuy P, Cacault P, Decriem J, Rivet S 2016 HOTVOLC A web-based monitoring system for volcanic hot spots. Geological Society, London, Special Publications 4261223–241Article Google Scholar Gouhier M, Deslandes M, GuĂ©henneux Y, Hereil P, Cacault P, Josse B 2020 Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC. Atmosphere 118864Article Google Scholar Harris A 2013 Thermal Remote Sensing of Active Volcanoes. Cambridge University Press, Cambridge, UKBook Google Scholar Höhle J, Höhle M 2009 Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens 64398–406. Google Scholar Kelfoun K, Santoso AB, Latchimy T, Bontemps M, Nurdien I, Beauducel F, Gueugneau V 2021 Growth and collapse of the 2018–2019 lava dome of Merapi volcano. Bull Volcanol 8321–13Article Google Scholar Kubanek J 2017 Westerhaus, Malte, Heck, Bernhard, TanDEM-X Time Series Analysis Reveals Lava Flow Volume and Effusion Rates of the 2012–2013 Tolbachik. Kamchatka Fissure Eruption, Journal of Geophysical Research Solid Earth 122107754–7774 Google Scholar Kubanek J, Westerhaus M, Schenk A, Aisyah N, Brotopuspito KS, Heck B 2015 Volumetric change quantification of the 2010 Merapi eruption using TanDEM-X InSAR. Remote Sens Environ 16416–25Article Google Scholar Labazuy P, Gouhier M, Harris A, GuĂ©henneux Y, Hervo M, BergĂšs JC, Rivet S 2012 Near real-time monitoring of the April–May 2010 Eyjafjallajökull ash cloud an example of a web-based, satellite data-driven, reporting system. Int J Environ Pollut 481–4262–272Article Google Scholar Laiolo, M.; Ripepe, M.; Cigolini, C.; Coppola, D.; Della Schiava, M.; Genco, R.; Innocenti, L.; Lacanna, G.; Marchetti, E.; Massimetti, F.; et al. Space-and Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano. Remote Sens. 2019, 11, 1182Marzano FS, Barbieri S, Vulpiani G, Rose WI 2006 Volcanic ash cloud retrieval by ground-based microwave weather radar. IEEE Trans Geosci Remote Sens 44113235–3246Article Google Scholar Massimetti F, Coppola D, Laiolo M, Valade S, Cigolini C, Ripepe M 2020 Volcanic Hot-Spot Detection Using SENTINEL-2 A Comparison with MODIS–MIROVA Thermal Data Series. Remote Sensing 125820. Google Scholar de Michele, M.; Raucoules, D.; Corradini, S.; Merucci, L.; Salerno, G.; Sellitto, P.; Carboni, E. Volcanic Cloud Top Height Estimation Using the Plume Elevation Model Procedure Applied to Orthorectified Landsat 8 Data. Test Case 26 October 2013 Mt. Etna Eruption. Remote Sens. 2019, 11, 785. Y. Barnie, B., Amigo, A., Kelfoun, K., Flores, F., Franco, L., Cardona, C., Cordova, L., Toloza, T., Monitoring and forecasting hazards from a slow growing lava dome using aerial imagery, tri-stereo PlĂ©iades-1A/B imagery and PDC numerical simulation, Earth and Planetary Science Letters, Volume 564, C, KÀÀb A 2011 Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5271–290. Google Scholar Pedersen GBM, Belart JMC, Óskarsson BV, Gudmundsson MT, Gies N, HögnadĂłttir Th, HjartardĂłttir AR, Pinel V, Berthier E, DĂŒrig T, Reynolds HI, Hamilton CW, Valsson G, Einarsson P, Ben-Yehosua D, Gunnarsson D, Oddsson, B. Volume, effusion rate, and lava transport during the 2021 Fagradalsfjall eruption Results from near real-time photogrammetric monitoring. Geophisical Research Letters in Press. Google Scholar Peltier A, Ferrazzini V, Di Muro A, Kowalski P, Villeneuve N, Richter N, Ramsey M 2021 Volcano crisis management at Piton de la Fournaise La RĂ©union during the COVID-19 lockdown. Seismological Society of America 92138–52 Google Scholar Pierrot-Deseilligny M 2011 Clery I. Apero, an Open Source Bundle Adjustment Software for Automatic Calibration and Orientation of Set of Images 385269–276 Google Scholar Pinel, V., Putra, R., Solikhin, A., Beauducel, F., Santoso, A. B., Humaida, H. Tracking the evolution of the Merapi volcano crater area by high-resolution satellite, Geophysical Research Abstracts, Vol. 22, EGU2020–5415, 2020, EGU General Assembly MP 2014 Time-averaged discharge rate of subaerial lava at Klauea Volcano, Hawai’i, measured from TanDEM-X interferometry Implications for magma supply and storage during 2011–2013. J Geophys Res Solid Earth 1195464–5481Article Google Scholar Richter N, Froger JL 2020 The role of Interferometric Synthetic Aperture Radar in detecting, mapping, monitoring, and modelling the volcanic activity of Piton de la Fournaise. La RĂ©union A Review Remote Sensing 1261019 Google Scholar Rupnik, E., Daakir, M. and Pierrot-Deseilligny, M. P. 2017. Micmac–a free, open-source solution for pho- togrammetry. Open Geospatial Data, Software and Standards, 211–9. A, Leadbetter S, Theys N, Carboni E, Witham CS, Stevenson JA, Shepherd J 2015 Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at BĂĄrarbunga Iceland. Journal of Geophysical Research Atmospheres 120189739–9757Article Google Scholar Scollo, S., Prestifilippo, M., Bonadonna, C., Cioni, R., Corradini, S., Degruyter, W., ... & Pecora, E. 2019. Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy. Remote Sensing, 1124, DE, Alexandrov O, Moratto ZM, Smith BE, Joughin IR, Porter C, Morin P 2016 An automated, open-source pipeline for mass production of digital elevation models DEMs from very-high-resolution commercial stereo satellite imagery. ISPRS J Photogramm Remote Sens 116101–117. Google Scholar Shean DE, Bhushan S, Montesano P, Rounce DR, Arendt A, Osmanoglu B 2020 A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Front Earth Sci 7363. Google Scholar Shevchenko, Alina V., Dvigalo, Viktor N., Zorn, Edgar U., Vassileva, Magdalena S., Massimetti, Francesco, Walter, Thomas R., Svirid, Ilya Yu., Chirkov, Sergey A., Ozerov, Alexey Yu., Tsvetkov, Valery A., Borisov, Ilya A, 2021 Constructive and Destructive Processes During the 2018–2019 Eruption Episode at Shiveluch Volcano, Kamchatka, Studied From Satellite and Aerial Data, Frontiers in Earth Science, S., Gurioli, L., Di Muro, A., Derrien, A., Ferrazzini, V., Gouhier, M., ... & Arellano, S. 2020. Evidences of plug pressurization enhancing magma fragmentation during the September 2016 basaltic eruption at Piton de la Fournaise La RĂ©union Island, France. Geochemistry, Geophysics, Geosystems, 212, S, Ley A, Massimetti F, D’Hondt O, Laiolo M, Coppola D, Loibl D, Hellwich O, Walter TR 2019 Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence The MOUNTS Monitoring System. Remote Sensing 11131528. Google Scholar Vicari, A., Bilotta, G., Bonfiglio, S., Cappello, A., Ganci, G., HĂ©rault, A., ... & Del Negro, C. 2011. LAV HAZARD a web-GIS interface for volcanic hazard assessment. Annals of Geophysics, 545.Wright R, Blake S, Harris AJ, Rothery DA 2001 A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sci Lett 1922223–233Article Google Scholar Wright R, Flynn L, Garbeil H, Harris A, Pilger E 2002 Automated volcanic eruption detection using MODIS. Remote Sens Environ 821135–155Article Google Scholar Download referencesAcknowledgementsHOTVOLC data processing performed by MG and YG was supported by French CNRS-INSU through the National Observation Service in Volcanolgy SNOV, and the French Space Agency named Centre National d’Études Spatiales CNES. PlĂ©iades images have been acquired thanks to the CNES via CIEST2 © CNES 2021, Distribution Airbus DS, CIEST2 is part of ForMTer and supported by ISDeform National Observation Service. VP was supported by the CNES project MagmaTrack. We also thank the handling editor for helpful data processing associated with SV’s work was funded thanks to the PAPIIT project informationAuthors and AffiliationsUniversitĂ© Clermont Auvergne, CNRS, F-63000, Clermont-Ferrand, IRD, OPGC, LMV, FranceMathieu Gouhier & Yannick GuĂ©henneuxVirginie Pinel- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, UGE, ISTerre, Grenoble, IRD, FranceVirginie PinelNational Land Survey of Iceland, Akranes, IcelandJoaquĂ­n M. C. BelartInstitute of Earth Sciences, University of Iceland, ReykjavĂ­k, IcelandJoaquĂ­n M. C. Belart & Magnus Tumi GudmundssonBRGM, Risks and Prevention Department, Geophysical Imagery and Remote Sensing Unit, 3 avenue Claude Guillemin, 45060, OrlĂ©ans, FranceMarcello De Michele & Daniel RaucoulesCNES Centre National d’Études Spatiales, Toulouse, FranceCatherine Proy & Claire TinelLEGOS UniversitĂ© de Toulouse, CNES, CNRS, UPS, Toulouse, IRD, FranceEtienne BerthierIcelandic Institute of Natural History,, GarabĂŠr, IcelandBirgir V. ÓskarssonUniversity Grenoble Alpes, University Savoie Mont Blanc, CNRS, UGE, ISTerre, Grenoble, IRD, FranceShan GremionDepartamento de VulcanologĂ­a, Instituto de GeofĂ­sica, Universidad Nacional AutĂłnoma de MĂ©xico UNAM, Mexico City, MexicoSĂ©bastien ValadeDepartment of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125, Turino, ItalyFrancesco MassimettiDepartment of Civil Protection and Emergency Management, National Commissioner of the Icelandic Police, ReykjavĂ­k, IcelandBjorn OddssonAuthorsMathieu GouhierYou can also search for this author in PubMed Google ScholarVirginie PinelYou can also search for this author in PubMed Google ScholarJoaquĂ­n M. C. BelartYou can also search for this author in PubMed Google ScholarMarcello De MicheleYou can also search for this author in PubMed Google ScholarCatherine ProyYou can also search for this author in PubMed Google ScholarClaire TinelYou can also search for this author in PubMed Google ScholarEtienne BerthierYou can also search for this author in PubMed Google ScholarYannick GuĂ©henneuxYou can also search for this author in PubMed Google ScholarMagnus Tumi GudmundssonYou can also search for this author in PubMed Google ScholarShan GremionYou can also search for this author in PubMed Google ScholarDaniel RaucoulesYou can also search for this author in PubMed Google ScholarSĂ©bastien ValadeYou can also search for this author in PubMed Google ScholarFrancesco MassimettiYou can also search for this author in PubMed Google ScholarBjorn OddssonYou can also search for this author in PubMed Google ScholarContributionsMG designed the paper and planned the research. VP, SG, JB and EB processed PlĂ©iades data for lava volume and effusion rates. MdM and DR processed PlĂ©iades data for volcanic plume study. CP and CT helped with fast PlĂ©iades acquisition through the CIEST2 consortium. MG and YG processed IR data from HOTVOLC platform MSG-SEVIRI. MTG, BO and BO led the operational survey for airborne data acquisition and processing. SV and FM processed sentinel-2 authorCorrespondence to Mathieu declarations Competing interest The authors declare that they have no competing interests. Additional informationPublisher's NoteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional and permissions Open Access This article is licensed under a Creative Commons Attribution International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original authors and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver applies to the data made available in this article, unless otherwise stated in a credit line to the data. Reprints and PermissionsAbout this articleCite this articleGouhier, M., Pinel, V., Belart, et al. CNES-ESA satellite contribution to the operational monitoring of volcanic activity The 2021 Icelandic eruption of Mt. Fagradalsfjall. J Appl. Volcanol. 11, 10 2022. citationReceived 17 September 2021Accepted 11 July 2022Published 13 August 2022DOI sensingPlĂ©iades imagesInfrared monitoringLava Webcamvolcan Piton de La Fournaise Retrouvez des vidĂ©os en Full HD du piton de La Fournaise avec une vue du Dolomieu et de l’enclos FouquĂ© depuis le piton de Bert, actualisĂ©es toutes les demi-heure (de jour comme de nuit).

Mais depuis plus de vingt-quatre heures dĂ©sormais, aucun dĂ©bordement du lac de lave ne s'est produit et aucune rĂ©surgence n'a Ă©tĂ© observĂ©e Ă  proximitĂ© du cĂŽne Ă©ruptif de l'Ă©ruption en cours depuis le 22 dĂ©cembre. Les projections sont beaucoup moins frĂ©quentes Ă  dĂ©passer la hauteur du cĂŽne et la lave s'Ă©vacue dĂ©sormais de maniĂšre invisible par les tunnels de lave qui se sont mis en place pour ressortir Ă  l'air libre plusieurs centaines de mĂštres de lave en aval, alimentant des coulĂ©es trĂšs actives visibles grĂące aux camĂ©ras de l'observatoire volcanologique, qui poursuivent leur course encore plus loin en aval. De fait, prĂ©cise le bulletin de ce samedi matin, "sur les derniĂšres 24 heures, l’amplitude du trĂ©mor est en diminution, depuis une trentaine d’heures. Les fluctuations dans l’amplitude du trĂ©mor sont liĂ©es en partie au niveau du lac de lave qui varie en fonction du mode de dĂ©gazage, de l’érosion du conduit Ă©ruptif et des ouvertures sporadiques des tunnels qui permettent une vidange du cĂŽne. Les ouvertures dans les tunnels gĂ©nĂšrent une baisse de pression au niveau du cĂŽne et au sein des tunnels, et entrainent une baisse de l’amplitude du trĂ©mor". Par ailleurs, "le front du dernier bras de coulĂ©e mis en place le long du rempart sud de l’Enclos FouquĂ© depuis plusieurs jours ne progresse que trĂšs lentement compte tenu des pentes relativement faibles dans le secteur". Observatoire volcanologique du piton de la Fournaise

15fĂ©vr. 2020 - DĂ©couvrez le tableau "piton de la fournaise" de isabelle carpaye sur Pinterest. Voir plus d'idĂ©es sur le thĂšme volcan, lave volcan, volcan eruption. Peu de sĂ©ismes en profondeur, de nombreux effondrements en surface le mois du juillet du Piton de la Fournaise page d'accueil rĂ©union page des articles volcan Piton de la Fournaise des Ă©boulements liĂ©s aux intempĂ©ries, mais pas de sismicitĂ© ni d’éruption Ă  venir page d'accueil rĂ©union page des articles volcan La RĂ©union une Ă©tude rĂ©vĂšle que le flanc Est du Piton de la Fournaise glisse vers la mer page d'accueil rĂ©union page des articles volcan Piton de la Fournaise le 2 avril 2007, il y a 15 ans jour pour jour, dĂ©butait "l’éruption du siĂšcle" page d'accueil rĂ©union page des articles volcan Piton de la Fournaise le cĂŽne volcanique formĂ© lors de la derniĂšre Ă©ruption baptisĂ© "Piton Karay" page d'accueil rĂ©union page des articles volcan Les particules fines de l’éruption du Hunga Tonga embrasent le ciel de La RĂ©union page d'accueil rĂ©union page des articles la rĂ©union Piton de la Fournaise l’enclos sera partiellement accessible au public ce vendredi Ă  8h page d'accueil rĂ©union page des articles volcan La RĂ©union l'Ă©ruption volcanique du Piton de la Fournaise a pris fin ce lundi page d'accueil rĂ©union page des articles volcan Retour en images sur 26 jours d’éruption du Piton de la Fournaise page d'accueil rĂ©union page des articles volcan Eruption du Piton de la Fournaise, de petits incendies dans le rempart Sud page d'accueil rĂ©union page des articles volcan Champ de lave, nuage lenticulaire, l’éruption du Piton de la Fournaise se poursuit page d'accueil rĂ©union page des articles volcan
ThePiton de la Fournaise is a volcano that rises to 2,632 meters above sea level in the south of Réunion Island. With its many lava flows, it's one of the most active volcanoes on the planet. During your 25-minutes helicopter flight, you may be lucky enough to see an eruption from above: a magical and unforgettable experience not to be missed!
La route qui mĂšne au plus prĂšs du volcan du Piton de la Fournaise est un des endroits Ă  dĂ©couvrir absolument Ă  La RĂ©union. Mais il y a aussi la la Plaine des Sables, le Pas de Bellecombe, la Plaine des Cafres ou Nez de BƓuf. Tant de lieux Ă  la beautĂ© sauvage et juste incroyable. Le Piton de la Fournaise, La Plaine des Sables et le Pas de Bellecombe Je n’étais jamais allĂ©e sur l’üle de La RĂ©union. Alors je devais absolument monter jusqu’au Pas de Bellecombe. Me rapprocher au plus prĂšs du volcan du Piton de la Fournaise. Et pourquoi pas faire la randonnĂ©e qui y mĂšne. Qui n’a pas envie de dĂ©couvrir un volcan encore actif ? Ce jour-lĂ , nous partons tĂŽt le matin de notre logement situĂ© au Port. Il y a de gros nuages qui obscurcissent le ciel mais il ne pleut pas. La route est agrĂ©able et trĂšs jolie. Puis, ça se met Ă  grimer de plus en plus. Tout est si vert autour de nous, c’est vraiment un nouveau paysage qui s’offre Ă  nous. La pluie s’invite alors et plus on grimpe, plus on se retrouve Ă  l’intĂ©rieur du nuage. Le paysage change encore, la vĂ©gĂ©tation se rarĂ©fie et les roches apparaissent. Nous dĂ©couvrons la superbe Plaine des Sables, mĂȘme si on ne la distingue pas complĂštement. La route se transforme Ă  un moment en piste, et il faut faire bien attention avec notre voiture de location. Nous roulons encore un moment et arrivons au Pas de Bellecombe. Malheureusement nous ne voyons rien et le nuage est de plus en plus Ă©pais. Nous attendons un long moment dans la voiture mais le temps est de pire en pire. MalgrĂ© cette mĂ©tĂ©o maussade, nous apprĂ©cions Ă  fond la balade. Le Piton de la Fournaise est aujourd’hui capricieux et a dĂ©cidĂ© de garder pour lui ses beautĂ©s, dommage cette pluie. Si vous voulez SAVOIR QUE FAIRE QUAND IL PLEUT Ă  La RĂ©union, c’est ici. Comment se rendre au Piton de la Fournaise ? Comment aller au volcan actif de La RĂ©union ? Pour rejoindre ce volcan mythique, ce n’est pas trĂšs compliquĂ©. Depuis Saint-Louis, emprunter la RN1 vers l’est et Ă  Saint-Pierre emprunter la RN3. Passer Le Tampon et suivre la direction de la Plaine des Cafres. Continuer de grimper et passer tout prĂšs de la CitĂ© du Volcan. La RF5, la Route du Volcan, se poursuit un moment puis se transforme en piste avec la FR6. Tout au bout de cette piste, on arrive au Pas de Bellecombe, le terminus de la piste. C’est l’endroit qui mĂšne en voiture au plus prĂšs du Piton de la Fournaise. Vous ĂȘtes arrivĂ©s. La randonnĂ©e au Piton de la Fournaise C’est LA randonnĂ©e Ă  faire absolument Ă  La RĂ©union. Soyez prĂ©parĂ©s Ă  la mĂ©tĂ©o souvent capricieuse. Et n’oubliez pas vos chaussures de randonnĂ©e pour les 516 mĂštres de dĂ©nivelĂ© de cette trĂšs belle balade. La randonnĂ© au Piton de la Fournaise depuis le Pas de Bellecombe est un must. Vous pouvez aussi la dĂ©buter depuis le gĂźte du Volcan, un peu plus en aval. Mais pensez Ă  bien vĂ©rifier s’il y a des sentiers fermĂ©s ou s’il n’y a pas d’éruption en cours. Et vous pourrez profiter du Piton des Neiges, des cratĂšres Rival ou Dolomieu et bien entendu du Piton de la Fournaise. Quelques photos des lieux autour du volcan —> Pour savoir quels sont les lĂ©gumes et fruits exotiques de La RĂ©union c’est ici À lire aussi Si vous voulez savoir s’il y a des animaux dangereux Ă  La RĂ©union Ou bien dĂ©couvrir les plus belles randonnĂ©es de l’üle de La RĂ©union Tout savoir sur la vanille Ă  la vanilleraie Roulof Ă  La RĂ©union Et aussi dĂ©couvrir les 3 plus belles plages de La RĂ©union Puis dĂ©couvrir toutes les spĂ©cialitĂ©s de la RĂ©union Et savoir oĂč louer votre voiture Ă  La RĂ©union DĂ©couvrez aussi quel est le coĂ»t de la vie Ă  La RĂ©union ClaireExploratrice d'horizons pas toujours lointains, amatrice de photo, et fan de moutons Islandais, les marrons glacĂ©s sont mon pĂ©chĂ© mignon.
  1. ĐšĐŸÖ€áŠ–áŒŒŃƒ б ŐșΔሊО
  2. Đ•Ń‡áŠŠÎŒ Đž Ő­
    1. Иá‰șωζΞ Ï„áŠŒŃ‚ĐČÖ…Ő·ŃƒáŠ“ Ő»ĐŸŐ¶Đ”áŠ€Ő§Ń‰ Đ»Î±Î·áĐșĐ»
    2. ОջаĐșĐ»áŒŽÏ„áˆ‚ŐŁŃƒ αλ Ń†Đ°ŐŹŃƒĐ»áˆšÎŸĐ” Ń‚ĐžÏ
  3. ቭасቾ Ï‡Đ”
Nom: Trace GPS Piton de la Fournaise cratÚre Dolomieu - La Réunion, itinéraire, parcours. Départ : Snack du Relais Touristique du Pas de Bellecombe, Route ForestiÚre du Volcan,
Par Robert Kassous le Ă  11h33, mis Ă  jour le Ă  11h33 Lecture 2 min. Le spectacle qu'offre le Piton de la Fournaise en Ă©ruption pourrait relancer le tourisme de l'Ăźle de la RĂ©union. Piton de la Fournaise SĂ©bastien Conejero Selon les spĂ©cialistes, le Piton de la Fournaise est l’un des volcans les plus actifs du monde par sa frĂ©quence d’éruptions en moyenne une tous les neuf mois. AprĂšs un premier Ă©pisode d’une dizaine de jours survenu en fĂ©vrier dernier, ce nouveau rĂ©veil semble s’ĂȘtre installĂ© pour durer, il pourrait ĂȘtre en intense activitĂ© durant plusieurs semaines’ indique un scientifique de l’Observatoire Volcanologique, construit sur l’üle en 1979 pour la surveillance du monstre. Volcan sous contrĂŽle Le dispositif Orsec spĂ©cifique aux volcans a Ă©tĂ© dĂ©clenchĂ© pour la protection des biens et des personnes. Pour l’instant, selon les autoritĂ©s, aucune coulĂ©e de lave rougeoyante ne menace les habitations. Elles offrent, bien au contraire, un spectacle extraordinaire et grandiose, de jour comme de nuit, Ă  des milliers d’admirateurs postĂ©s Ă  diffĂ©rents points de vue de l’üle. Il existe deux accĂšs pour admirer le spectacle route du Volcan et la route des Laves, permettant sans se mettre en danger de contempler le volcan et ses coulĂ©es. Un volcan pour doper le tourisme. En reprenant du service, le volcan dope le tourisme sur l’üle. De nombreux chasseurs de lave et de belles images, attirĂ©s par l’ampleur du monstre, affluent comme des milliers de curieux, le long de la "route des laves", ce qui provoque, Ă  certaines heures de la journĂ©e, d’énormes embouteillages. Plusieurs tours opĂ©rateurs se sont spĂ©cialisĂ©s dans l’organisation de voyages dĂ©couvertes des volcans du monde. "En organisant des expĂ©ditions je rĂ©ponds Ă  l’irrĂ©pressible besoin d’y aller voir de plus prĂšs, de se mettre au diapason de la Terre et de sa lourde respiration, de sentir sur sa nuque l’haleine brĂ»lante du monstre et de plisser les yeux devant la beautĂ© du Diable", explique poĂ©tiquement, Guy de Saint-Cyr, volcanologue et organisateur d’expĂ©dition pour Aventure et Volcans. L’office de tourisme de la rĂ©union se rĂ©jouit de cet engouement et constate que les hĂŽtels refont actuellement le plein. Une bonne nouvelle pour l’économie touristique de l’üle permettant par la mĂȘme d’oublier les attaques de requins. France La RĂ©union Bourse Le 19/08 Ă  18H05 CAC 40 6495,83 -0,94%
Observatoirevolcanologique du Piton de la Fournaise. ActualitĂ©s; Le Piton de la Fournaise; Les rĂ©seaux d'observation. Le rĂ©seau sismologique; Les rĂ©seaux de dĂ©formation; Le rĂ©seau gĂ©ochimique; Le rĂ©seau de camĂ©ras; Le rĂ©seau de pluviomĂštres; L'observatoire Le rĂ©seau de camĂ©ras Le rĂ©seau de camĂ©ras de l'OVPF (©OVPF/IPGP) Infos pratiques . Infos pratiques Suivi de l’activitĂ© volcanique du Piton de la Fournaise par l’Observatoire Volcanologique du Piton de la Fournaise OVPF. Suivi et observation du trĂ©mor, de l’activitĂ© volcanique et des Ă©ruptions en cours. Bilan des derniĂšres Ă©ruptions. Carte des sentiers et systĂšme d’ en moyenne une Ă©ruption par an, le Volcan du Piton de la Fournaise est un des volcans les plus actifs de monde. MĂȘme s’il ne prĂ©sente pas de danger immĂ©diat pour la population, il fait l’objet d’un dispositif permanent de suivi et d’alerte en cas d’éruption. Lorsqu’elle se produisent et qu’elles sont visibles, les Ă©ruptions du Piton de la Fournaise constitue un des plus beaux spectacles de la nature. ActivitĂ© volcanique du Piton de la FournaiseNiveau d’activitĂ© PHASE DE VIGILANCENiveau d’alerte 0AccĂšs Ă  l’enclos ouvert Consultez l'activitĂ© du Piton de La Fournaise en direct L’Observatoire volcanologique du Piton de La Fournaise propose aux internautes de suivre en direct la mĂ©tĂ©o grĂące Ă  une camĂ©ra installĂ©e au Piton de Bert. Des images qui sont actualisĂ©es toutes les demi-heures, de jour comme de IRT / OVPF Les derniĂšres actualitĂ©s de l'activitĂ© volcanique du Piton de la Fournaise Retrouvez les derniĂšres actualitĂ©s et les Ă©ruptions du Piton de la Fournaise de l’annĂ©e 2022 sur l’üle de La 21 janvier 2022 Passage en phase de surveillance de l’enclos du Piton de la Fournaise par le PrĂ©fet de La RĂ©union. Par consĂ©quent, l’accĂšs Ă  l’enclos est Ă  nouveau autorisĂ© mĂȘme s’il reste limitĂ© Ă  ces sentiers Le sentier Pas de Bellecombe – Formica LĂ©o – Sentier Rivals – CratĂšre Caubet,le sentier Pas de Bellecombe – Formica LĂ©o – sentier d’accĂšs au site d’observation du cratĂšre Dolomieu accĂšs par le nord du cratĂšre,le sentier Kapor jusqu’à Piton sentier Rivals uniquement jusqu’au cratĂšre Caubet. 17 janvier 2022 Bonne annĂ©e ! L’éruption volcanique qui a dĂ©butĂ© le 22 dĂ©cembre dĂ©jĂ  est terminĂ©e ! L’interdiction d’accĂšs Ă  la partie haute de l’enclos reste en vigueur jusqu’à une nouvelle dĂ©cembre 2021 D’aprĂšs l’observation rĂ©alisĂ©e par l’Observatoire volcanologique du Piton de la Fournaise, l’activitĂ© semble se stabiliser er le front de coulĂ©e ne semble pas avoir progressĂ©. Il ne reste plus qu’une fissure active. L’activitĂ© de fontaine de lave au sein du cĂŽne est faible, ne dĂ©passant que trĂšs rarement la hauteur du cĂŽne, de 15 mĂštres. Le spetacle n’en reste pas moins magique !22 dĂ©cembre 2021 Le Piton de la Fournaise est entrĂ© en Ă©ruption Ă  3h30 ! Quatre fissures se sont formĂ©es sur le flan SUD du volcan et sont visibles depuis le Piton de Bert, via le sentier au dĂ©part du parking octobre 2021 L’alerte de niveau 1 a Ă©tĂ© dĂ©clenchĂ© lundi 18 octobre par le prĂ©fet, confirmant le dĂ©but d’une crise sismique. L’activitĂ© se stabilise finalement et l’alerte est levĂ©e. La premiĂšre Ă©ruption de l’annĂ©e s’est achevĂ©e le 14 mai 2021. Elle avait commencĂ© le 9 avril 16 avril 2021. Une semaine aprĂšs le dĂ©but de l’éruption du Piton de la Fournaise, le spectacle continue ! Malheureusement, les conditions mĂ©tĂ©orologiques sont compliquĂ©es et les observations du site Ă©ruptif sont compliquĂ©es. 3 bouches Ă©ruptives sont dĂ©sormais visibles. Le front de la coulĂ©e, toujours en haut des grandes pentes, n’a pas Ă©voluĂ© depuis quelques 9 avril 2021. Volcan la pĂ©tĂ© ! C’est officiel, le Piton de la Fournaise est entrĂ© en Ă©ruption Ă  19h ce vendredi 9 avril 2021. L’éruption du volcan est visible depuis le sentier GRR2 au niveau du Piton de Bert. L’accĂšs est particuliĂšrement facile pour le plus grand plaisir des spectateurs venus observĂ©s les fontaines de laves particuliĂšrement visibles. Dans son bulletin du Jeudi 2 avril 2020 Ă  8h15, l’OVPF Observatoire Volcanologique du Piton de la Fournaise a annoncĂ© le passage en alerte 1 du Piton de la Fournaise suite Ă  une crise sismique enregistrĂ©es Ă  partir de 8h. Ainsi, 92 sĂ©ismes volcano-techniques ont Ă©tĂ© dĂ©tectĂ©s, ce qui signifie que le magma a quittĂ© le rĂ©servoir et se propage vers la surface. L’observatoire indique ainsi qu’une Ă©ruption n’est donc pas exclue Ă  moyen terme. Quelques heures plus tard, l’OVPF a confirmĂ© l’éruption et le passage ainsi en phase 2 du Piton de la Fournaise une Ă©ruption est en cours sur le flanc Est du Volcan, Ă  moins de 2 kilomĂštres du Ă©ruption s’est terminĂ©e le lundi 6 avril Ă  13h30 suite Ă  une forte chute de l’intensitĂ© du trĂ©mor. Cependant, Ă©tant donnĂ© la forte sismicitĂ© et la faible durĂ©e de l’éruption, aucune hypothĂšse n’est acartĂ©e quant Ă  l’évolution de la situation au Piton de La au vol de reconnaissance effectuĂ© par la SAG Section aĂ©rienne de la Gendarmerie et le PGHM Peleton de Gendarmerie de Haute Montagne, le front de coulĂ©e s’est arrĂȘtĂ© Ă  environ 2 kilomĂštres de la route nationale 2 dite Route des Laves », Ă  360 mĂštres d’altitude. Suite Ă  une visite sur le terrain, l’Observatoire Volcanologique du Piton de La Fournaise a constatĂ© un flanc EST absolument seconde Ă©ruption de l’annĂ©e 2020 Ă  La RĂ©union s’est dĂ©roulĂ©e dans un contexte exceptionnel intĂ©grant un confinement de la population suite Ă  la pandĂ©mie de coronavirus en cours dans le monde. Probablement l’une des plus secrĂštes des Ă©ruptions
 pour encore plus de magie ! 21 fĂ©vrier 2020 La prĂ©fecture de La RĂ©union annonce le passage en phase de vigilance. L’accĂšs Ă  l’enclĂŽt est ouvert et limitĂ© aux trois sentiers balisĂ©s suivants le sentier Pas de Bellecombe – Formica LĂ©o – sentier Rivais- CratĂšre Caubet, le sentier Pas de Bellecombe – Formica LĂ©o – sentier d’accĂšs au site d’observation du cratĂšre Dolomieu accĂšs par le nord du cratĂšre et le sentier Kapor jusqu’à Piton fĂ©vrier 2020 C’est officiel. La premiĂšre Ă©ruption de l’annĂ©e 2020 Ă  La RĂ©union est terminĂ©e depuis le 16 fĂ©vrier 2020 Ă  14h. La prĂ©fecture de La RĂ©union annonce le passage en phase de sauvegarde. L’accĂšs Ă  l’enclĂŽt reste interdit. On se donne rendez-vous Ă  la prochaine ? 15 fĂ©vrier 2020 – 15h30 La fin de l’éruption se prĂ©cise avec une vĂ©ritable chute du trĂ©mor volcanique. En revanche, les conditions mĂ©tĂ©orologiques ne permettent pas de confirmer fĂ©vrier 2020 – 8h45 L’Observatoire volcanologique du Piton de La Fournaise confirme la progression de l’éruption. Le front de coulĂ©e s’élĂšve Ă  environ 1 400 m d’altitude mais reste visible depuis la Route des fĂ©vrier 2020 – 10h27 Une crise sismique est enregistrĂ©e sur les instruments de l’Observatoire Volcanologique du Piton de la Fournaise, accompagnĂ©e de dĂ©formation rapide. Le magma est en train de quitter le rĂ©servoir magmatique et se propage vers la surface. La premiĂšre Ă©ruption de l’annĂ©e 2020 dĂ©bute alors au cours de la journĂ©e. 31 octobre 2019 – 22h La PrĂ©fecture de La RĂ©union annonce le retour en phase de vigilance volcanique Ă  compter de ce vendredi 1er novembre 2019. L’accĂšs Ă  l’enclos est Ă  nouveau autorisĂ© depuis le Pas de Bellecombe ainsi que par le sentier octobre 2019 – 18h L’éruption est dĂ©sormais terminĂ©e et oui, c’est ça aussi la magie du Piton de la Fournaise! et n’aura finalement pas atteint la route des Laves. L’Alerte est levĂ©e, la phase de sauvegarde est en cours. L’accĂšs Ă  l’enclos reste octobre 2019 – 12h Dans son dernier bulletin, l’Observatoire Volcanique du Piton de la Fournaise indique que l’éruption se poursuit mais plus faiblement. La hauteur desprojections de lave est infĂ©rieur Ă  20 mĂštres. Ce matin, une seule coulĂ©e Ă©tait encore active. A priori, le front de coulĂ©e le plus proche de la route des Laves est figĂ© Ă  environ 250 mĂštres de la RN2. Depuis plusieurs jours, de trĂšs bons nombreux rĂ©unionnais sont venus dĂ©couvrir cette Ă©ruption exceptionnelle, nous offrant des clichĂ©s Octobre 2019 – 15h44 C’EST FAIT ! 5Ăšme Ă©ruption de l’annĂ©e pour le Piton de la Fournaise qui est rentrĂ© en Ă©ruption. Volcan la pĂ©tĂ© ! A priori, les fissures sont visibles sur le secteur des Grandes Pentes, donc visibles depuis le Grand BrulĂ© en attente de confirmation visuelle. Dans ce cadre, le PrĂ©fet a dĂ©cidĂ© la mise en Ɠuvre de la phase d’alerte 2-2 Ă©ruption en cours dans l’enclos » du dispositif spĂ©cifique ORSEC*. Aucun accĂšs Ă  l’enclos Fouquet n’est Octobre 2019 DĂ©cidĂ©ment, le Piton de la Fournaise s’amuse ! Depuis ce matin, une nouvelle crise sismique est enregistrĂ©e avec une dĂ©formation rapide. Le magma est en train de monter Ă  la surface. L’accĂšs Ă  l’enclos est formellement interdit Ă  Octobre 2019 La prĂ©fecture de La RĂ©union annonce le retour en phase de vigilance. Ce jeudi 24 octobre, l’enclos est de nouveau accessible uniquement Ă  partir des sentiers au dĂ©part du Pas de Octobre 2019 – 21h30 La PrĂ©fecture de La RĂ©union vient de dĂ©clencher l’alerte 1 Ă©ruption probable ou imminente » du plan ORSEC Volcan. Tous les accĂšs Ă  l’enclos FouquĂ© sont formellement interdits. 20 Octobre 2019 – 20h30 Depuis 20h00, les instruments de l’Observatoire Volcanologique du Piton de la Fournaise indique une crise sismique accompagnĂ©e de dĂ©formation rapide. Le magma est en train de quitter le rĂ©servoir magmatique et se propage vers la surface. Une Ă©ruption est probable Ă  brĂšve Ă©chĂ©ance dans les prochaines minutes ou heures. 11 Octobre 2019 Reprise de la sismicitĂ© observĂ©e sous le Piton de La le 11 octobre, l’Observatoire volcanologique du Piton de la Fournaise OVPF a notĂ© 36 sĂ©ismes volcano-tectoniques superficiels, avec une reprise du gonflement, de la base et du sommet de l’édifice du Piton de la Fournaise. Le rĂ©servoir superficiel du Piton de la Fournaise est en train de se recharger de magma. Ce phĂ©nomĂšne peut durer plusieurs jours Ă  plusieurs semaines avant que l’on ne puisse constater une Ă©ruption. Elle peut Ă©galement simplement s’arrĂȘter sans donner lieu Ă  une Ă©ruption
 A surveiller de prĂšs ! AccĂšs Ă  l’enclos du Piton de la Fournaise quels sont les itinĂ©raires balisĂ©s pour observer le volcan hors phase Ă©ruptive ?L’accĂšs Ă  la partie haute de l’Enclos reste strictement limitĂ© Ă  sentiers balisĂ©s, Ă  savoir Le sentier Pas de Bellecombe – Formica LĂ©o – sentier Rivals- CratĂšre Caubet ;Le sentier Pas de Bellecombe – Formica LĂ©o – sentier d’accĂšs au site d’observation du cratĂšre Dolomieu accĂšs par le nord du cratĂšreLe sentier Kapor jusqu’à Piton sentier Rivals est ouvert Ă  la circulation jusqu’au niveau du cratĂšre Caubet. La portion entre le cratĂšre Caubet et BelvĂ©dĂšre sur ChĂąteau Fort reste interdite d’accĂšs. Source PrĂ©fecture de La RĂ©union / 13 mai 2020 DĂ©couvrez en vidĂ©o la 5Ăšme Ă©ruption de l'annĂ©e 2019 du Piton de La Fournaise Suivi de l’activitĂ© volcanique du Piton de la Fournaise comment cela fonctionne sur l’üle de La RĂ©union ?C’est l’Observatoire Volcanologique du Piton de la Fournaise OVPF qui suit en permanence 24h/24 et 365 jours / an l’activitĂ© du Piton de la Fournaise. Il existe plusieurs rĂ©seaux d’observation qui comportent au total une centaine d’instruments sur 35 sites diffĂ©rents le rĂ©seau sismologique,le rĂ©seau des dĂ©formations avec les inclinomĂštres, extensomĂštres, et les rĂ©cepteurs GPS,le rĂ©seau de camĂ©ras,le rĂ©seau mĂ©tĂ©orologique pluviomĂštresle rĂ©seau gĂ©ochimique effectuant des mesures de SO2, H2S et CO2 dans les fumeroles du sommet et de CO2 dans le sol en champs d’alerte en cas d’éruption du Piton de la FournaiseUn dispositif spĂ©cifique opĂ©rationnel DSO ORSEC Volcan du Piton de la Fournaise » existe. L’OVPF informe la prĂ©fecture en cas d’apparition de signes d’activitĂ© du Piton de la Fournaise et propose le dĂ©clenchement des niveaux d’alerte. Le dispositif d’alerte s’appuie sur 4 phases VIGILANCE Ă©ruption possible ou prĂ©sence de risques sur le secteur. Restriction de l’accĂšs du public Ă  la partie haute de l’enclos celui ci n’est possible que sur l’un des sentiers 1 Ă©ruption probable ou imminente. Fermeture de l’Enclos et Ă©vacuation des randonneurs qui se trouveraient sur le site, interdiction de tout poser d’aĂ©ronefs dans la zone du volcanALERTE 2 Ă©ruption en cours, qui peut ĂȘtre de 3 types 2-1 Ă©ruption dans le cratĂšre Dolomieu aucune menace2-2 Ă©ruption dans l’enclos pas de menace directe2-3 Ă©ruption hors enclos menace pour la sĂ©curitĂ© des personnes et des biensSAUVEGARDE Ă©ruption terminĂ©e et/ou stabilisĂ©e. RĂ©ouverture partielle de l’enclos possible aprĂšs reconnaissances. Vous aimerez aussi IAL5vNJ.
  • x25eveed7z.pages.dev/230
  • x25eveed7z.pages.dev/339
  • x25eveed7z.pages.dev/207
  • x25eveed7z.pages.dev/282
  • x25eveed7z.pages.dev/306
  • x25eveed7z.pages.dev/202
  • x25eveed7z.pages.dev/144
  • x25eveed7z.pages.dev/378
  • x25eveed7z.pages.dev/100
  • camera volcan piton de la fournaise